
Applicability
This document applies to the part numbers of STM32WB55xx/STM32WB35Cx devices and the device variants as stated in this
page.

It gives a summary and a description of the device errata, with respect to the device datasheet and reference manual RM0434.

Deviation of the real device behavior from the intended device behavior is considered to be a device limitation. Deviation of the
description in the reference manual or the datasheet from the intended device behavior is considered to be a documentation
erratum. The term “errata” applies both to limitations and documentation errata.

Table 1. Device summary

Reference Part numbers

STM32WB55Cx STM32WB55CC, STM32WB55CE, STM32WB55CG

STM32WB55Rx STM32WB55RC, STM32WB55RE, STM32WB55RG

STM32WB55Vx STM32WB55VC, STM32WB55VE, STM32WB55VG

STM32WB35Cx STM32WB35CC, STM32WB35CE

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1) REV_ID(2)

STM32WB55Cx/Rx/Vx Y 0x2001

STM32WB35Cx A 0x2001

1. Refer to the device datasheet for how to identify this code on different types of package.
2. REV_ID[15:0] bitfield of DBGMCU_IDCODE register.

STM32WB55xx/STM32WB35Cx device errata

 STM32WB55Cx STM32WB55Rx
STM32WB55Vx STM32WB35Cx

Errata sheet

ES0394 - Rev 8 - May 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 Summary of device errata

The following table gives a quick reference to the STM32WB55xx/STM32WB35Cx device limitations and their
status:
A = workaround available
N = no workaround available
P = partial workaround available
Applicability of a workaround may depend on specific conditions of target application. Adoption of a workaround
may cause restrictions to target application. Workaround for a limitation is deemed partial if it only reduces the
rate of occurrence and/or consequences of the limitation, or if it is fully effective for only a subset of instances on
the device or in only a subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation

Status

ST
M

32
W

B
55

C
x/

R
x/

Vx

R
ev

. Y

ST
M

32
W

B
35

C
x

R
ev

. A

Core 1

2.1.1 Interrupted loads to SP can cause erroneous behavior A A

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used A A

2.1.3 Store immediate overlapping exception return operation might vector to
incorrect interrupt A A

System

2.2.1 LSI2 not usable as RF low-power clock P P

2.2.2 Unstable LSI1 when it clocks RTC or CSS on LSE P P

2.2.3 Internal voltage reference corrupted upon Stop mode entry with
temperature sensing enabled A A

2.2.4 Full JTAG configuration without NJTRST pin cannot be used A A

2.2.5 Auto-incrementing feature of the debug port cannot span more than
1 Kbyte A A

2.2.6 PC13 signal transitions disturb LSE N -

2.2.7 Wrong DMAMUX synchronization and trigger input connections to EXTI A A

2.2.8 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line
48 event A A

2.2.9 Flash OPTVERR flag is always set after system reset A A

2.2.10 Overwriting with all zeros a Flash memory location previously
programmed with all ones fails N N

2.2.11 WLCSP100 RF BLE overconsumption N -

2.2.12 WLCSP100 noise coupling in LDO configuration at specific conditions P -

2.2.13 FLASH_ECCR corrupted upon reset or power-down occurring during
Flash memory program or erase operation A A

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Summary of device errata

ES0394 - Rev 8 page 2/31

Function Section Limitation

Status

ST
M

32
W

B
55

C
x/

R
x/

Vx

R
ev

. Y

ST
M

32
W

B
35

C
x

R
ev

. A

System

2.2.14 A system reset occurs when nRST_SHDW is set and nRST_STDBY is
cleared and Shutdown mode is entered A A

2.2.15 PH3 signal transitions disturb LSE N N

2.2.16 WLCSP100 PA2 signal transitions disturb LSE N -

2.2.17 Incorrect exit from Stop modes when the DBGMCU/DBG_STOP is
enabled A A

2.2.18 HSE is switched on immediately on Stop 2 exit, causing an undesired
over-consumption N N

2.2.19 When VDD exceeds 2.5V in LDO configuration a glitch on HSE may
create a hard fault on M4/M0 A -

2.2.20 WLCSP100 when SMPS is in bypass mode a glitch on HSE create a hard
fault on M4/M0 N -

DMA 2.3.1 DMA disable failure and error flag omission upon simultaneous transfer
error and global flag clear A A

DMAMUX

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register N N

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request N N

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register N N

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register
write coinciding with synchronization event A A

QUADSPI

2.5.1 First nibble of data not written after dummy phase A A

2.5.2 Wrong data from memory-mapped read after an indirect mode operation A A

2.5.3 Memory-mapped read operations may fail when timeout counter is
enabled P P

2.5.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register P P

ADC 2.6.1 Wrong ADC result if conversion done late after calibration or previous
conversion A A

TIM

2.7.1 One-pulse mode trigger not detected in master-slave reset + trigger
configuration P P

2.7.2 Consecutive compare event missed in specific conditions N N

2.7.3 Output compare clear not working with external counter reset P P

LPTIM
2.8.1 Device may remain stuck in LPTIM interrupt when entering Stop mode A A

2.8.2 Device may remain stuck in LPTIM interrupt when clearing event flag P P

RTC and TAMP

2.9.1 RTC interrupt can be masked by another RTC interrupt A A

2.9.2 Calendar initialization may fail in case of consecutive INIT mode entry A A

2.9.3 Alarm flag may be repeatedly set when the core is stopped in debug N N

I2C 2.10.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one
I2C kernel clock period P P

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Summary of device errata

ES0394 - Rev 8 page 3/31

Function Section Limitation

Status

ST
M

32
W

B
55

C
x/

R
x/

Vx

R
ev

. Y

ST
M

32
W

B
35

C
x

R
ev

. A

I2C

2.10.2 Spurious bus error detection in master mode A A

2.10.3 Spurious master transfer upon own slave address match P P

2.10.5 OVR flag not set in underrun condition N N

2.10.6 Transmission stalled after first byte transfer A A

USART
2.11.1 Anticipated end-of-transmission signaling in SPI slave mode A A

2.11.2 Data corruption due to noisy receive line N N

SPI

2.12.1 BSY bit may stay high when SPI is disabled A A

2.12.2 BSY bit may stay high at the end of data transfer in slave mode A A

2.12.3 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting
of data counters A A

USB

2.13.2 ESOF interrupt timing desynchronized after resume signaling A A

2.13.3 Incorrect CRC16 in the memory buffer N N

2.13.4 Device not responding to USB messages to its endpoint 0xF N N

The following table gives a quick reference to the documentation errata.

Table 4. Summary of device documentation errata

Function Section Documentation erratum

I2C 2.10.4 START bit is cleared upon setting ADDRCF, not upon address match

USB 2.13.1 Possible packet memory overrun/underrun at low APB frequency

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Summary of device errata

ES0394 - Rev 8 page 4/31

2 Description of device errata

The following sections describe limitations of the applicable devices with Arm® core and provide workarounds if
available. They are grouped by device functions.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2.1 Core 1
Reference manual and errata notice for the Arm® Cortex®-M4 FPU core revision r0p1 is available from http://
infocenter.arm.com.

2.1.1 Interrupted loads to SP can cause erroneous behavior
This limitation is registered under Arm ID number 752770 and classified into “Category B”. Its impact to the device
is minor.

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/R13), erroneous
behavior can occur. In all cases, returning from the interrupt will result in the load instruction being executed an
additional time. For all instructions performing an update to the base register, the base register will be erroneously
updated on each execution, resulting in the stack-pointer being loaded from an incorrect memory location.
The affected instructions that can result in the load transaction being repeated are:
• LDR SP, [Rn],#imm
• LDR SP, [Rn,#imm]!
• LDR SP, [Rn,#imm]
• LDR SP, [Rn]
• LDR SP, [Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect memory address are:
• LDR SP,[Rn],#imm
• LDR SP,[Rn,#imm]!

As compilers do not generate these particular instructions, the limitation is only likely to occur with hand-written
assembly code.

Workaround

Both issues may be worked around by replacing the direct load to the stack-pointer, with an intermediate load to a
general-purpose register followed by a move to the stack-pointer.

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
This limitation is registered under Arm ID number 776924 and classified into “Category B”. Its impact to the device
is limited.

Description

The VDIV and VSQRT instructions take 14 cycles to execute. When an interrupt is taken a VDIV or VSQRT
instruction is not terminated, and completes its execution while the interrupt stacking occurs. If lazy context save
of floating point state is enabled then the automatic stacking of the floating point context does not occur until a
floating point instruction is executed inside the interrupt service routine.
Lazy context save is enabled by default. When it is enabled, the minimum time for the first instruction in the
interrupt service routine to start executing is 12 cycles. In certain timing conditions, and if there is only one or two
instructions inside the interrupt service routine, then the VDIV or VSQRT instruction might not write its result to the
register bank or to the FPSCR.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Description of device errata

ES0394 - Rev 8 page 5/31

The failure occurs when the following condition is met:
1. The floating point unit is enabled
2. Lazy context saving is not disabled
3. A VDIV or VSQRT is executed
4. The destination register for the VDIV or VSQRT is one of s0 - s15
5. An interrupt occurs and is taken
6. The interrupt service routine being executed does not contain a floating point instruction
7. Within 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed
A minimum of 12 of these 14 cycles are utilized for the context state stacking, which leaves 2 cycles for
instructions inside the interrupt service routine, or 2 wait states applied to the entire stacking sequence (which
means that it is not a constant wait state for every access).
In general, this means that if the memory system inserts wait states for stack transactions (that is, external
memory is used for stack data), then this erratum cannot be observed.
The effect of this erratum is that the VDIV or VQSRT instruction does not complete correctly and the register bank
and FPSCR are not updated, which means that these registers hold incorrect, out of date, data.

Workaround

A workaround is only required if the floating point unit is enabled. A workaround is not required if the stack is in
external memory.
There are two possible workarounds:
• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the FPCCR at address

0xE000EF34).
• Ensure that every interrupt service routine contains more than 2 instructions in addition to the exception

return instruction.

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt
This limitation is registered under Arm ID number 838869 and classified into “Category B (rare)”. Its impact to the
device is minor.

Description

The core includes a write buffer that permits execution to continue while a store is waiting on the bus. Under
specific timing conditions, during an exception return while this buffer is still in use by a store instruction, a late
change in selection of the next interrupt to be taken might result in there being a mismatch between the interrupt
acknowledged by the interrupt controller and the vector fetched by the processor.
The failure occurs when the following condition is met:
1. The handler for interrupt A is being executed.
2. Interrupt B, of the same or lower priority than interrupt A, is pending.
3. A store with immediate offset instruction is executed to a bufferable location.

– STR/STRH/STRB <Rt>, [<Rn>,#imm]
– STR/STRH/STRB <Rt>, [<Rn>,#imm]!
– STR/STRH/STRB <Rt>, [<Rn>],#imm

4. Any number of additional data-processing instructions can be executed.
5. A BX instruction is executed that causes an exception return.
6. The store data has wait states applied to it such that the data is accepted at least two cycles after the BX is

executed.
– Minimally, this is two cycles if the store and the BX instruction have no additional instructions between

them.
– The number of wait states required to observe this erratum needs to be increased by the number of

cycles between the store and the interrupt service routine exit instruction.
7. Before the bus accepts the buffered store data, another interrupt C is asserted which has the same or lower

priority as A, but a greater priority than B.
Example:

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Core 1

ES0394 - Rev 8 page 6/31

The processor should execute interrupt handler C, and on completion of handler C should execute the handler
for B. If the conditions above are met, then this erratum results in the processor erroneously clearing the pending
state of interrupt C, and then executing the handler for B twice. The first time the handler for B is executed it
will be at interrupt C's priority level. If interrupt C is pended by a level-based interrupt which is cleared by C's
handler then interrupt C will be pended again once the handler for B has completed and the handler for C will be
executed.
As the STM32 interrupt C is level based, it eventually becomes pending again and is subsequently handled.

Workaround

For software not using the memory protection unit, this erratum can be worked around by setting DISDEFWBUF
in the Auxiliary Control Register.
In all other cases, the erratum can be avoided by ensuring a DSB occurs between the store and the BX
instruction. For exception handlers written in C, this can be achieved by inserting the appropriate set of intrinsics
or inline assembly just before the end of the interrupt function, for example:
ARMCC:

...
__schedule_barrier();
__asm{DSB};
__schedule_barrier();
}

GCC:

...
__asm volatile ("dsb 0xf":::"memory");
}

2.2 System

2.2.1 LSI2 not usable as RF low-power clock

Description

The calibration mechanism and jitter peaks cause the LSI2 clock to exceed the maximum 500 ppm frequency
deviation specified in the Bluetooth® Low Energy standard for low-speed clock.

Workaround

Clock the Bluetooth® peripheral using the LSE oscillator, instead of the LSI2.

2.2.2 Unstable LSI1 when it clocks RTC or CSS on LSE

Description

The LSI1 clock can become unstable (duty cycle different from 50 %) and its maximum frequency can become
significantly higher than 32 kHz, when:
• LSI1 clocks the RTC, or it clocks the clock security system (CSS) on LSE (which holds when the

LSECSSON bit set), and
• the VDD power domain is reset while the backup domain is not reset, which happens:

– upon exiting Shutdown mode
– if VBAT is separate from VDD and VDD goes off then on
– if VBAT is tied to VDD (internally in the package for products not featuring the VBAT pin, or externally)

and a short (< 1 ms) VDD drop under VDD(min) occurs

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 7/31

Workaround

Apply one of the following measures:
• Clock the RTC with LSE or HSE/32, without using the CSS on LSE
• If LSI1 clocks the RTC or when the LSECSSON bit is set, reset the backup domain upon each VDD power

up (when the BORRSTF flag is set). If VBAT is separate from VDD, also restore the RTC configuration,
backup registers and anti-tampering configuration.

2.2.3 Internal voltage reference corrupted upon Stop mode entry with temperature sensing enabled

Description

When entering Stop mode with the temperature sensor channel and the associated ADC(s) enabled, the internal
voltage reference may be corrupted.
The occurrence of the corruption depends on the supply voltage and the temperature.
The corruption of the internal voltage reference may cause:
• an overvoltage in VCORE domain
• an overshoot / undershoot of internal clock (LSI, HSI, MSI) frequencies
• a spurious brown-out reset

The limitation applies to Stop 1 and Stop 2 modes.

Workaround

Before entering Stop mode:
• Disable the ADC(s) using the temperature sensor signal as input, and/or
• Disable the temperature sensor channel, by clearing the CH17SEL bit of the ADCx_CCR register.

Disabling both the ADC(s) and the temperature sensor channel reduces the power consumption during Stop
mode.

2.2.4 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in Debug mode, the connection with the debugger is lost if the NJTRST pin
(PB4) is used as a GPIO or for an alternate function other than NJTRST. Only the 4-wire JTAG port configuration
is impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.2.5 Auto-incrementing feature of the debug port cannot span more than 1 Kbyte

Description

The address auto-increment function of the AP2/AHB access ports is limited to 1 Kbyte of contiguous data.

Workaround

To write a contiguous chunk of data larger than 1 Kbyte to an AP2/AHB access port, split and write it in blocks not
exceeding 1 Kbyte each.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 8/31

2.2.6 PC13 signal transitions disturb LSE

Description

The PC13 port toggling disturbs the LSE clock. It may not be usable when LSE is used.

Workaround

None.

2.2.7 Wrong DMAMUX synchronization and trigger input connections to EXTI

Description

By error, synchronization and trigger inputs of the DMAMUX peripheral are connected to interrupt output lines of
the EXTI block, instead of being connected to its SYSCFG multiplexer output lines.
The EXTI interrupt lines exhibit a rising-edge transition upon each active transition (rising, falling or both) of
corresponding GPIOs, as defined in the EXTI_RTSRx and EXTI_FTSRx registers.
As a consequence, the falling active edge option of the DMAMUX synchronization and trigger inputs is unusable
because falling edges on these inputs do not occur upon GPIO events but upon clearing the EXTI interrupt
pending flags (by setting the corresponding PIF bits of the EXTI_PRx register).

Workaround

For the DMAMUX synchronization and trigger events to occur upon determined rising or/and falling edge of the
corresponding GPIOs:
• Set the desired active edge polarities of the corresponding GPIOs through the EXTI_RTSRx and

EXTI_FTSRx registers.
• Set the active edge polarity to rising for all corresponding DMAMUX input lines, through the SPOL bits of the

DMAMUX_CxCR register (for synchronization inputs) and the GPOL bits of the DMAMUX_RGxCR register
(for trigger inputs).

• Ensure that EXTI interrupt pending flags corresponding to the GPIOs used for DMAMUX inputs are cleared
in the EXTI interrupt service routine.

Note: This can be ensured if using the HAL_GPIO_IrqHandler function provided by STMicroelectronics.

2.2.8 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line 48 event

Description

With the JTAG debugger enabled on GPIO pins and after a wakeup from debug triggered by an event on EXTI
line 48 (CDBGPWRUPREQ), the device may enter in a state in which attempts to enter Stop 2 mode are not fully
effective: The CPUs duly enter their respective CStop modes and are able to wake up so the software execution
is not disturbed. However, the system does not transit to a low-power state and thus keeps a power consumption
higher than expected.

Workaround

Before entering Stop 2 mode, mask wakeup with interrupt request from EXTI line 48 (CDBGPWRUPREQ) in both
EXTI_IMR2 and EXTI_C2IMR2 registers.

2.2.9 Flash OPTVERR flag is always set after system reset

Description

During option byte loading, the options are read by double word with ECC. If the word and its complement are not
matching, the OPTVERR flag is set.
However, the OPTVERR flag is always set after a system reset despite all option bytes being loaded and read
correctly.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 9/31

Workaround

After reset, clear the OPTVERR flag in FLASH_SR register.

2.2.10 Overwriting with all zeros a Flash memory location previously programmed with all ones fails

Description

Any attempt to re-program with all zeros (0x0000 0000 0000 0000) a Flash memory location previously
programmed with 0xFFFF FFFF FFFF FFFF fails and the PROGERR flag of the FLASH_SR register is set.

Workaround

None.

2.2.11 WLCSP100 RF BLE overconsumption

Description

For BLE operation, the device housed in WLCSP100 package requires a specific software management that
leads to RX and TX overconsumption. The following table shows the impacted parameters:

Symbol Parameter Conditions Typ Unit

Itxmax TX maximum output consumption

SMPS bypass 14

mA

SMPS on

VFBSMPS = 1.7 V
8.4

Itx0dbm TX 0 dBm output consumption

SMPS bypass 9.4

SMPS on

VFBSMPS = 1.4 V
5.5

Irxlo RX consumption

SMPS bypass 8.6

SMPS on

VFBSMPS = 1.4 V
4.9

Workaround

None.

2.2.12 WLCSP100 noise coupling in LDO configuration at specific conditions

Description

In LDO configuration of WLCSP100 device, noise on power supply lines may negatively impact the RF (BLE and
802.15.4) interoperability when the die temperature is -20 °C or less while the VDD supply voltage is 3.3 V or
more.

Note: The SMPS configuration is exempt of the issue described.

Workaround

If the combination of low die temperature and high VDD as indicated cannot be avoided, use SMPS configuration.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 10/31

2.2.13 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory program
or erase operation

Description

Reset or power-down occurring during a Flash memory location program or erase operation, followed by a read of
the same memory location, may lead to a corruption of the FLASH_ECCR register content.

Workaround

Under such condition, erase the page(s) corresponding to the Flash memory location.

2.2.14 A system reset occurs when nRST_SHDW is set and nRST_STDBY is cleared and Shutdown
mode is entered

Description

When the following configuration is selected:
• nRST_SHDW is set
• nRST_STDBY is cleared,

a system reset is generated when Shutdown mode is entered.

Workaround

The only valid configuration to avoid a reset after entering into Shutdown mode is the following:
• nRST_SHDW is set
• nRST_STDBY is set.

2.2.15 PH3 signal transitions disturb LSE

Description

Toggling on the PH3 port disturbs the LSE clock. The PH3 port may not be usable at the same time as LSE is
used.

Workaround

None

2.2.16 WLCSP100 PA2 signal transitions disturb LSE

Description

Toggling on the PA2 port disturbs the LSE clock.
The PA2 port may not be usable at the same time as LSE is used.

This limitation concerns the WLCSP100 package.

Workaround

None.

2.2.17 Incorrect exit from Stop modes when the DBGMCU/DBG_STOP is enabled

Description

When DBG_STOP is set in the microcontroller debug unit (DBGMCU), systick is still running and can trigger the
CPU to exit Stop 0, Stop 1, or Stop 2, but the system remains in low power state. The CPU therefore fetches
incorrect data from the inactive Flash which will generate a hard fault.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 11/31

Workaround

Disable systick before entering in Stop mode when DBG_STOP is set in DBGMCU.

2.2.18 HSE is switched on immediately on Stop 2 exit, causing an undesired over-consumption

Description

An internal undefined value present on the RCC HSE input may trigger HSE to restart immediately when Stop 2
condition ends.

Workaround

None

2.2.19 When VDD exceeds 2.5V in LDO configuration a glitch on HSE may create a hard fault on M4/M0

Description

When RF activity starts, the internal RF LDOs switches on at the same time and produces an extra HSE clock
cycle pulse.
The CPUs process wrong data and Bluetooth® Low Energy firmware becomes unstable.

Workaround

Add a series inductance and resistor between VLXSMPS and VFBSMPS pins as illustrated in the figure.
The recommended inductor characteristics are the inductance 1.8 nH +/- 0.1 nH, self-resonance frequency of 6
Ghz +/-15 %, and rated current of 1000 mA. The resistor of 2.2 Ω recommended resistance must be dimensioned
to dissipate 1 watt during 5 ns. Refer to Minimal BOM for STM32WB Series microcontrollers (AN5290) for more
details.

Figure 1. Workaround

MS53566V1

SMPS
(not used)

VDDSMPS

VLXSMPS

VFBSMPS

VDD

RF
regulator

Main
regulator

LP
regulator

2.2.20 WLCSP100 when SMPS is in bypass mode a glitch on HSE create a hard fault on M4/M0

Description

When RF activity starts, the internal RF LDOs switches on at the same time and produces an extra HSE clock
cycle pulse.
The CPUs process wrong data and Bluetooth® Low Energy firmware becomes unstable.

Workaround

None.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
System

ES0394 - Rev 8 page 12/31

https://www.st.com/content/ccc/resource/technical/document/application_note/group1/cf/9d/5e/38/d2/83/4e/91/DM00600032/files/DM00600032.pdf/jcr:content/translations/en.DM00600032.pdf

2.3 DMA

2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag
clear

Description

Upon a data transfer error in a DMA channel x, both the specific TEIFx and the global GIFx flags are raised and
the channel x is normally automatically disabled. However, if in the same clock cycle the software clears the GIFx
flag (by setting the CGIFx bit of the DMA_IFCR register), the automatic channel disable fails and the TEIFx flag is
not raised.
This issue does not occur with ST's HAL software that does not use and clear the GIFx flag when the channel is
active.

Workaround

Do not clear GIFx flags when the channel is active. Instead, use HTIFx, TCIFx, and TEIFx specific event flags and
their corresponding clear bits.

2.4 DMAMUX

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register

Description

The SOFx flag of the DMAMUX_CSR status register is not asserted if overrun from another DMAMUX channel
occurs when the software writes into the DMAMUX_CFR register.
This can happen when multiple DMA channels operate in synchronization mode, and when overrun can occur
from more than one channel. As the SOFx flag clear requires a write into the DMAMUX_CFR register (to set
the corresponding CSOFx bit), overrun occurring from another DMAMUX channel operating during that write
operation fails to raise its corresponding SOFx flag.

Workaround

None. Avoid the use of synchronization mode for concurrent DMAMUX channels, if at least two of them potentially
generate synchronization overrun.

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request

Description

In the DMAMUX request generator, a trigger event detected in a critical instant of the last-generated DMAMUX
request being served by the DMA controller does not assert the corresponding trigger overrun flag OFx. The
critical instant is the clock cycle at the very end of the trigger overrun condition.
Additionally, upon the following trigger event, one single DMA request is issued by the DMAMUX request
generator, regardless of the programmed number of DMA requests to generate.
The failure only occurs if the number of requests to generate is set to more than two (GNBREQ[4:0] > 00001).

Workaround

Make the trigger period longer than the duration required for serving the programmed number of DMA requests,
so as to avoid the trigger overrun condition from occurring on the very last DMA data transfer.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
DMA

ES0394 - Rev 8 page 13/31

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register

Description

The OFx flag of the DMAMUX_RGSR status register is not asserted if an overrun from another DMAMUX request
generator channel occurs when the software writes into the DMAMUX_RGCFR register. This can happen when
multiple DMA channels operate with the DMAMUX request generator, and when an overrun can occur from more
than one request generator channel. As the OFx flag clear requires a write into the DMAMUX_RGCFR register
(to set the corresponding COFx bit), an overrun occurring in another DMAMUX channel operating with another
request generator channel during that write operation fails to raise the corresponding OFx flag.

Workaround

None. Avoid the use of request generator mode for concurrent DMAMUX channels, if at least two channels are
potentially generating a request generator overrun.

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding with
synchronization event

Description

If a write access into the DMAMUX_CxCR register having the SE bit at zero and SPOL[1:0] bitfield at a value
other than 00:
• sets the SE bit (enables synchronization),
• modifies the values of the DMAREQ_ID[5:0] and SYNC_ID[4:0] bitfields, and
• does not modify the SPOL[1:0] bitfield,

and if a synchronization event occurs on the previously selected synchronization input exactly two AHB clock
cycles before this DMAMUX_CxCR write, then the input DMA request selected by the DMAREQ_ID[5:0] value
before that write is routed.

Workaround

Ensure that the SPOL[1:0] bitfield is at 00 whenever the SE bit is 0. When enabling synchronization by setting
the SE bit, always set the SPOL[1:0] bitfield to a value other than 00 with the same write operation into the
DMAMUX_CxCR register.

2.5 QUADSPI

2.5.1 First nibble of data not written after dummy phase

Description

The first nibble of data to be written to the external Flash memory is lost when the following condition is met:
• QUADSPI is used in indirect write mode.
• At least one dummy cycle is used.

Workaround

Use alternate bytes instead of dummy phase to add latency between the address phase and the data phase. This
works only if the number of dummy cycles to substitute corresponds to a multiple of eight bits of data.
Example:
• To substitute one dummy cycle, send one alternate byte (only possible in DDR mode with four data lines).
• To substitute two dummy cycles, send one alternate byte in SDR mode with four data lines.
• To substitute four dummy cycles, send two alternate bytes in SDR mode with four data lines, or one alternate

byte in SDR mode with two data lines.
• To substitute eight dummy cycles, send one alternate byte in SDR mode with one data line.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
QUADSPI

ES0394 - Rev 8 page 14/31

2.5.2 Wrong data from memory-mapped read after an indirect mode operation

Description

The first memory-mapped read in indirect mode can yield wrong data if the QUADSPI peripheral enters memory-
mapped mode with bits ADDRESS[1:0] of the QUADSPI_AR register both set.

Workaround

Before entering memory-mapped mode, apply the following measure, depending on access mode:
• Indirect read mode: clear the QUADSPI_AR register then issue an abort request to stop reading and to clear

the BUSY bit.
• Indirect write mode: clear the QUADSPI_AR register.

Caution: The QUADSPI_DR register must not be written after clearing the QUADSPI_AR register.

2.5.3 Memory-mapped read operations may fail when timeout counter is enabled

Description

In memory-mapped mode with the timeout counter enabled (by setting the TCEN bit of the QUADSPI_CR
register), the QUADSPI peripheral may hang and memory-mapped read operation fail. This occurs if the timeout
flag TOF is set at the same clock edge as a new memory-mapped read request.

Workaround

Disable the timeout counter. To raise the chip select, perform an abort at the end of each memory-mapped read
operation.

2.5.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register

Description

Memory-mapped accesses to the QUADSPI peripheral operating in indirect mode unduly clear the QUADSPI_AR
register to 0x00.

Workaround

Adopt one of the following measures:
• Avoid memory-mapped accesses to the QUADSPI peripheral operating in indirect mode.
• After each memory-mapped access to the QUADSPI operating in indirect mode, write the QUADSPI_AR

register with a desired value

2.6 ADC

2.6.1 Wrong ADC result if conversion done late after calibration or previous conversion

Description

The result of an ADC conversion done more than 1 ms later than the previous ADC conversion or ADC calibration
might be incorrect.

Workaround

Perform two consecutive ADC conversions in single, scan or continuous mode. Reject the result of the first
conversion and only keep the result of the second.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
ADC

ES0394 - Rev 8 page 15/31

2.7 TIM

2.7.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration

Description

The failure occurs when several timers configured in one-pulse mode are cascaded, and the master timer is
configured in combined reset + trigger mode with the MSM bit set:
OPM = 1 in TIMx_CR1, SMS[3:0] = 1000 and MSM = 1 in TIMx_SMCR.
The MSM delays the reaction of the master timer to the trigger event, so as to have the slave timers cycle-
accurately synchronized.
If the trigger arrives when the counter value is equal to the period value set in the TIMx_ARR register, the
one-pulse mode of the master timer does not work and no pulse is generated on the output.

Workaround

None. However, unless a cycle-level synchronization is mandatory, it is advised to keep the MSM bit reset, in
which case the problem is not present. The MSM = 0 configuration also allows decreasing the timer latency to
external trigger events.

2.7.2 Consecutive compare event missed in specific conditions

Description

Every match of the counter (CNT) value with the compare register (CCR) value is expected to trigger a compare
event. However, if such matches occur in two consecutive counter clock cycles (as consequence of the CCR
value change between the two cycles), the second compare event is missed for the following CCR value
changes:
• in edge-aligned mode, from ARR to 0:

– first compare event: CNT = CCR = ARR
– second (missed) compare event: CNT = CCR = 0

• in center-aligned mode while up-counting, from ARR-1 to ARR (possibly a new ARR value if the period is
also changed) at the crest (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = (ARR-1)
– second (missed) compare event: CNT = CCR = ARR

• in center-aligned mode while down-counting, from 1 to 0 at the valley (that is, when TIMx_RCR = 0):
– first compare event: CNT = CCR = 1
– second (missed) compare event: CNT = CCR = 0

This typically corresponds to an abrupt change of compare value aiming at creating a timer clock single-cycle-
wide pulse in toggle mode.
As a consequence:
• In toggle mode, the output only toggles once per counter period (squared waveform), whereas it is expected

to toggle twice within two consecutive counter cycles (and so exhibit a short pulse per counter period).
• In center mode, the compare interrupt flag does note rise and the interrupt is not generated.

Note: The timer output operates as expected in modes other than the toggle mode.

Workaround

None.

2.7.3 Output compare clear not working with external counter reset

Description

The output compare clear event (ocref_clr) is not correctly generated when the timer is configured in the following
slave modes: Reset mode, Combined reset + trigger mode, and Combined gated + reset mode.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
TIM

ES0394 - Rev 8 page 16/31

The PWM output remains inactive during one extra PWM cycle if the following sequence occurs:
1. The output is cleared by the ocref_clr event.
2. The timer reset occurs before the programmed compare event.

Workaround

Apply one of the following measures:
• Use BKIN (or BKIN2 if available) input for clearing the output, selecting the Automatic output enable mode

(AOE = 1).
• Mask the timer reset during the PWM ON time to prevent it from occurring before the compare event (for

example with a spare timer compare channel open-drain output connected with the reset signal, pulling the
timer reset line down).

2.8 LPTIM

2.8.1 Device may remain stuck in LPTIM interrupt when entering Stop mode

Description

This limitation occurs when disabling the low-power timer (LPTIM).
When the user application clears the ENABLE bit in the LPTIM_CR register within a small time window around
one LPTIM interrupt occurrence, then the LPTIM interrupt signal used to wake up the device from Stop mode may
be frozen in active state. Consequently, when trying to enter Stop mode, this limitation prevents the device from
entering low-power mode and the firmware remains stuck in the LPTIM interrupt routine.
This limitation applies to all Stop modes and to all instances of the LPTIM. Note that the occurrence of this issue
is very low.

Workaround

In order to disable a low power timer (LPTIMx) peripheral, do not clear its ENABLE bit in its respective LPTIM_CR
register. Instead, reset the whole LPTIMx peripheral via the RCC controller by setting and resetting its respective
LPTIMxRST bit in RCC_APByRSTRz register.

2.8.2 Device may remain stuck in LPTIM interrupt when clearing event flag

Description

This limitation occurs when the LPTIM is configured in interrupt mode (at least one interrupt is enabled) and
the software clears any flag in LPTIM_ISR register by writing its corresponding bit in LPTIM_ICR register. If the
interrupt status flag corresponding to a disabled interrupt is cleared simultaneously with a new event detection,
the set and clear commands might reach the APB domain at the same time, leading to an asynchronous interrupt
signal permanently stuck high.
This issue can occur either during an interrupt subroutine execution (where the flag clearing is usually done), or
outside an interrupt subroutine.
Consequently, the firmware remains stuck in the LPTIM interrupt routine, and the device cannot enter Stop mode.

Workaround

To avoid this issue, it is strongly advised to follow the recommendations listed below:
• Clear the flag only when its corresponding interrupt is enabled in the interrupt enable register.
• If for specific reasons, it is required to clear some flags that have corresponding interrupt lines disabled in

the interrupt enable register, it is recommended to clear them during the current subroutine prior to those
which have corresponding interrupt line enabled in the interrupt enable register.

• Flags must not be cleared outside the interrupt subroutine.

Note: The proper clear sequence is already implemented in the HAL_LPTIM_IRQHandler in the STM32Cube.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
LPTIM

ES0394 - Rev 8 page 17/31

2.9 RTC and TAMP

2.9.1 RTC interrupt can be masked by another RTC interrupt

Description

One RTC interrupt request can mask another RTC interrupt request if they share the same EXTI configurable line.
For example, interrupt requests from Alarm A and Alarm B or those from tamper and timestamp events are OR-ed
to the same EXTI line (refer to the EXTI line connections table in the Extended interrupt and event controller
(EXTI) section of the reference manual).
The following code example and figure illustrate the failure mechanism: The Alarm A event is lost (fails to
generate interrupt) as it occurs in the failure window, that is, after checking the Alarm A event flag but before the
effective clear of the EXTI interrupt flag by hardware. The effective clear of the EXTI interrupt flag is delayed with
respect to the software instruction to clear it.
Alarm interrupt service routine:

void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI line flag for RTC alarms*/
 If(ALRAF) /* Check if Alarm A triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the Alarm A interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process Alarm A event */
 }
 If(ALRBF) /* Check if Alarm B triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the Alarm B interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process Alarm B event */
 }
}

Figure 2. Masked RTC interrupt

Alarm B Flag

Alarm A Flag

EXTI Flag

ISR execution
CLEAR_
ALARM_
EXTI();

If
(ALRA
F)

If (ALRBF)
{
CLEAR_FLAG(ALRBF);
PROCESS_AlarmBEvent();
}

Failure window:
Alarm A Flag is being set after the software checks
its value
Alarm A Flag does not raise EXTI flag because this
one is not yet hardware cleared.

Alarm A is never processed
because no interrupt is generated
through EXTI

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
RTC and TAMP

ES0394 - Rev 8 page 18/31

Workaround

In the interrupt service routine, apply three consecutive event flag ckecks - source one, source two, and source
one again, as in the following code example:

void RTC_Alarm_IRQHandler(void)
{
 CLEAR_ALARM_EXTI(); /* Clear the EXTI's line Flag for RTC Alarm */
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
 If(ALRBF) /* Check if AlarmB triggered ISR */
 {
 CLEAR_FLAG(ALRBF); /* Clear the AlarmB interrupt pending bit */
 PROCESS_AlarmBEvent(); /* Process AlarmB Event */
 }
 If(ALRAF) /* Check if AlarmA triggered ISR */
 {
 CLEAR_FLAG(ALRAF); /* Clear the AlarmA interrupt pending bit */
 PROCESS_AlarmAEvent(); /* Process AlarmA Event */
 }
}

2.9.2 Calendar initialization may fail in case of consecutive INIT mode entry

Description

If the INIT bit of the RTC_ISR register is set between one and two RTCCLK cycles after being cleared, the
INITF flag is set immediately instead of waiting for synchronization delay (which should be between one and two
RTCCLK cycles), and the initialization of registers may fail.
Depending on the INIT bit clearing and setting instants versus the RTCCLK edges, it can happen that, after
being immediately set, the INITF flag is cleared during one RTCCLK period then set again. As writes to calendar
registers are ignored when INITF is low, a write during this critical period might result in the corruption of one or
more calendar registers.

Workaround

After existing the initialization mode, clear the BYPSHAD bit (if set) then wait for RSF to rise, before entering the
initialization mode again.

Note: It is recommended to write all registers in a single initialization session to avoid accumulating synchronization
delays.

2.9.3 Alarm flag may be repeatedly set when the core is stopped in debug

Description

When the core is stopped in debug mode, the clock is supplied to subsecond RTC alarm downcounter even
though the device is configured to stop the RTC in debug.
As a consequence, when the subsecond counter is used for alarm condition (the MASKSS[3:0] bitfield of the
RTC_ALRMASSR and/or RTC_ALRMBSSR register set to a non-zero value) and the alarm condition is met just
before entering a breakpoint or printf, the ALRAF and/or ALRBF flag of the RTC_SR register is repeatedly set by
hardware during the breakpoint or printf, which makes any tentative to clear the flag(s) ineffective.

Workaround

None.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
RTC and TAMP

ES0394 - Rev 8 page 19/31

2.10 I2C

2.10.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period

Description

The I2C-bus specification and user manual specify a minimum data setup time (tSU;DAT) as:
• 250 ns in Standard mode
• 100 ns in Fast mode
• 50 ns in Fast mode Plus

The device does not correctly sample the I2C-bus SDA line when tSU;DAT is smaller than one I2C kernel clock
(I2C-bus peripheral clock) period: the previous SDA value is sampled instead of the current one. This can result in
a wrong receipt of slave address, data byte, or acknowledge bit.

Workaround

Increase the I2C kernel clock frequency to get I2C kernel clock period within the transmitter minimum data setup
time. Alternatively, increase transmitter’s minimum data setup time. If the transmitter setup time minimum value
corresponds to the minimum value provided in the I2C-bus standard, the minimum I2CCLK frequencies are as
follows:
• In Standard mode, if the transmitter minimum setup time is 250 ns, the I2CCLK frequency must be at least

4 MHz.
• In Fast mode, if the transmitter minimum setup time is 100 ns, the I2CCLK frequency must be at least

10 MHz.
• In Fast-mode Plus, if the transmitter minimum setup time is 50 ns, the I2CCLK frequency must be at least

20 MHz.

2.10.2 Spurious bus error detection in master mode

Description

In master mode, a bus error can be detected spuriously, with the consequence of setting the BERR flag of the
I2C_SR register and generating bus error interrupt if such interrupt is enabled. Detection of bus error has no effect
on the I2C-bus transfer in master mode and any such transfer continues normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by software. No other action
is required and the ongoing transfer can be handled normally.

2.10.3 Spurious master transfer upon own slave address match

Description

When the device is configured to operate at the same time as master and slave (in a multi- master I2C-bus
application), a spurious master transfer may occur under the following condition:
• Another master on the bus is in process of sending the slave address of the device (the bus is busy).
• The device initiates a master transfer by bit set before the slave address match event (the ADDR flag set in

the I2C_ISR register) occurs.
• After the ADDR flag is set:

– the device does not write I2C_CR2 before clearing the ADDR flag, or
– the device writes I2C_CR2 earlier than three I2C kernel clock cycles before clearing the ADDR flag

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
I2C

ES0394 - Rev 8 page 20/31

In these circumstances, even though the START bit is automatically cleared by the circuitry handling the ADDR
flag, the device spuriously proceeds to the master transfer as soon as the bus becomes free. The transfer
configuration depends on the content of the I2C_CR2 register when the master transfer starts. Moreover, if the
I2C_CR2 is written less than three kernel clocks before the ADDR flag is cleared, the I2C peripheral may fall into
an unpredictable state.

Workaround

Upon the address match event (ADDR flag set), apply the following sequence.
Normal mode (SBC = 0):
1. Set the ADDRCF bit.
2. Before Stop condition occurs on the bus, write I2C_CR2 with the START bit low.
Slave byte control mode (SBC = 1):
1. Write I2C_CR2 with the slave transfer configuration and the START bit low.
2. Wait for longer than three I2C kernel clock cycles.
3. Set the ADDRCF bit.
4. Before Stop condition occurs on the bus, write I2C_CR2 again with its current value.
The time for the software application to write the I2C_CR2 register before the Stop condition is limited, as the
clock stretching (if enabled), is aborted when clearing the ADDR flag.
Polling the BUSY flag before requesting the master transfer is not a reliable workaround as the bus may become
busy between the BUSY flag check and the write into the I2C_CR2 register with the START bit set.

2.10.4 START bit is cleared upon setting ADDRCF, not upon address match

Description

Some reference manual revisions may state that the START bit of the I2C_CR2 register is cleared upon slave
address match event.
Instead, the START bit is cleared upon setting, by software, the ADDRCF bit of the I2C_ICR register, which does
not guarantee the abort of master transfer request when the device is being addressed as slave. This product
limitation and its workaround are the subject of a separate erratum.

Workaround

No application workaround is required for this description inaccuracy issue.

2.10.5 OVR flag not set in underrun condition

Description

In slave transmission with clock stretching disabled (NOSTRETCH = 1 in the I2C_CR1 register), an underrun
condition occurs if the current byte transmission is completed on the I2C bus, and the next data is not yet written
in the TXDATA[7:0] bitfield. In this condition, the device is expected to set the OVR flag of the I2C_ISR register
and send 0xFF on the bus.
However, if the I2C_TXDR is written within the interval between two I2C kernel clock cycles before and three APB
clock cycles after the start of the next data transmission, the OVR flag is not set, although the transmitted value is
0xFF.

Workaround

None.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
I2C

ES0394 - Rev 8 page 21/31

2.10.6 Transmission stalled after first byte transfer

Description

When the first byte to transmit is not prepared in the TXDATA register, two bytes are required successively,
through TXIS status flag setting or through a DMA request. If the first of the two bytes is written in the I2C_TXDR
register in less than two I2C kernel clock cycles after the TXIS/DMA request, and the ratio between APB clock
and I2C kernel clock frequencies is between 1.5 and 3, the second byte written in the I2C_TXDR is not internally
detected. This causes a state in which the I2C peripheral is stalled in master mode or in slave mode, with clock
stretching enabled (NOSTRETCH = 0). This state can only be released by disabling the peripheral (PE = 0) or by
resetting it.

Workaround

Apply one of the following measures:
• Write the first data in I2C_TXDR before the transmission starts.
• Set the APB clock frequency so that its ratio with respect to the I2C kernel clock frequency is lower than 1.5

or higher than 3.

2.11 USART

2.11.1 Anticipated end-of-transmission signaling in SPI slave mode

Description

In SPI slave mode, at low USART baud rate with respect to the USART kernel and APB clock frequencies, the
transmission complete flag TC of the USARTx_ISR register may unduly be set before the last bit is shifted on the
transmit line.
This leads to data corruption if, based on this anticipated end-of-transmission signaling, the application disables
the peripheral before the last bit is transmitted.

Workaround

Upon the TC flag rise, wait until the clock line remains idle for more than the half of the communication clock
cycle. Then only consider the transmission as ended.

2.11.2 Data corruption due to noisy receive line

Description

In UART mode with oversampling by 8 or 16 and with 1 or 2 stop bits, the received data may be corrupted if a
glitch to zero shorter than the half-bit occurs on the receive line within the second half of the stop bit.

Workaround

None.

2.12 SPI

2.12.1 BSY bit may stay high when SPI is disabled

Description

The BSY flag may remain high upon disabling the SPI while operating in:
• master transmit mode and the TXE flag is low (data register full).
• master receive-only mode (simplex receive or half-duplex bidirectional receive phase) and an SCK strobing

edge has not occurred since the transition of the RXNE flag from low to high.
• slave mode and NSS signal is removed during the communication.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
USART

ES0394 - Rev 8 page 22/31

Workaround

When the SPI operates in:
• master transmit mode, disable the SPI when TXE = 1 and BSY = 0.
• master receive-only mode, ignore the BSY flag.
• slave mode, do not remove the NSS signal during the communication.

2.12.2 BSY bit may stay high at the end of data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in slave mode. This occurs upon coincidence
of internal CPU clock and external SCK clock provided by master.
In such an event, if the software only relies on BSY flag to detect the end of SPI slave data transaction (for
example to enter low-power mode or to change data line direction in half-duplex bidirectional mode), the detection
fails.
As a conclusion, the BSY flag is unreliable for detecting the end of data transactions.

Workaround

Depending on SPI operating mode, use the following means for detecting the end of transaction:
• When NSS hardware management is applied and NSS signal is provided by master, use NSS flag.
• In SPI receiving mode, use the corresponding RXNE event flag.
• In SPI transmit-only mode, use the BSY flag in conjunction with a timeout expiry event. Set the timeout such

as to exceed the expected duration of the last data frame and start it upon TXE event that occurs with the
second bit of the last data frame. The end of the transaction corresponds to either the BSY flag becoming
low or the timeout expiry, whichever happens first.

Prefer one of the first two measures to the third as they are simpler and less constraining.
Alternatively, apply the following sequence to ensure reliable operation of the BSY flag in SPI transmit mode:
1. Write last data to data register.
2. Poll the TXE flag until it becomes high, which occurs with the second bit of the data frame transfer.
3. Disable SPI by clearing the SPE bit mandatorily before the end of the frame transfer.
4. Poll the BSY bit until it becomes low, which signals the end of transfer.

Note: The alternative method can only be used with relatively fast CPU speeds versus relatively slow SPI clocks
or/and long last data frames. The faster is the software execution, the shorter can be the duration of the last data
frame.

2.12.3 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters

Description

When SPI is handled by DMA in full-duplex master or slave mode with CRC enabled, the CRC computation may
temporarily freeze for the ongoing frame, which results in corrupted CRC.
This happens when the receive counter reaches zero upon the receipt of the CRC pattern (as the receive counter
was set to a value greater, by CRC length, than the transmit counter). An internal signal dedicated to receive-only
mode is left unduly pending. Consequently, the signal can cause the CRC computation to freeze during a next
transaction in which DMA TXE event service is accidentally delayed (for example, due to DMA servicing a request
from another channel).

Workaround

Apply one of the following measures prior to each full-duplex SPI transaction:
• Set the DMA transmission and reception data counters to equal values. Upon the transaction completion,

read the CRC pattern out from RxFIFO separately by software.
• Reset the SPI peripheral via peripheral reset register.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
SPI

ES0394 - Rev 8 page 23/31

2.13 USB

2.13.1 Possible packet memory overrun/underrun at low APB frequency

Description

Some data sheet and/or reference manual revisions may omit the information that 10 MHz minimum APB clock
frequency is required to avoid USB data overrun/underrun issues.
Operating the USB peripheral with lower APB clock frequency may lead to:
• Overrun for out transactions - the USB peripheral fails to store the received data into the PBM before the

next byte is received on the USB (PBM overrun). The USB cell detects an internal error condition, discards
the last received byte, stops writing into the PBM, sends no acknowledge (forcing the host to retry the
transaction), and informs the application by setting the PMAOVR flag/interrupt.

• Underrun for in transactions - the USB peripheral fails to read from the PBM the next byte to transmit
before the transmission of the previous one is completed on the USB. The USB cell detects an internal error
condition, stops reading from PBM, generates a bit stuffing error on the USB (forcing the host to retry the
transaction), and informs the application by setting the PMAOVR flag/interrupt.

This is a documentation issue rather than a device limitation.

Workaround

No application workaround is required if the minimum APB clock frequency of 10 MHz is respected.

2.13.2 ESOF interrupt timing desynchronized after resume signaling

Description

Upon signaling resume, the device is expected to allow full 3 ms of time to the host or hub for sending the
initial SOF (start of frame) packet, without triggering SUSP interrupt. However, the device only allows two full
milliseconds and unduly triggers SUSP interrupt if it receives the initial packet within the third millisecond.

Workaround

When the device initiates resume (remote wakeup), mask the SUSP interrupt by setting the SUSPM bit for 3 ms,
then unmask it by clearing SUSPM.

2.13.3 Incorrect CRC16 in the memory buffer

Description

Memory buffer locations are written starting from the address contained in the ADDRn_RX for a number of bytes
corresponding to the received data packet length, CRC16 inclusive (that is, data payload length plus two bytes),
or up to the last allocated memory location defined by BL_SIZE and NUM_BLOCK, whichever comes first. In the
former case, the CRC16 checksum is written wrongly, with its least significant byte going to both memory buffer
byte locations expected to receive the least and the most significant bytes of the checksum.
Although the checksum written in the memory buffer is wrong, the underlying CRC checking mechanism in the
USB peripheral is fully functional.

Workaround

Ignore the CRC16 data in the memory buffer.

2.13.4 Device not responding to USB messages to its endpoint 0xF

Description

The device does not respond to USB messages to its USB endpoint 0xF if the USB device address (the ADD[6:0]
bitfield of the USB_DADDR register) is in the range from 0x60 to 0x6F.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
USB

ES0394 - Rev 8 page 24/31

Workaround

In the application, ensure that this combination of USB endpoint number and USB device address does not occur.

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
USB

ES0394 - Rev 8 page 25/31

Revision history

Table 5. Document revision history

Date Version Changes

21-Feb-2019 4 First public release.

21-Nov-2019 5

Added errata in Section 2 Description of device errata:
• Flash OPTVERR flag is always set after system reset
• Overwriting with all zeros a Flash memory location previously

programmed with all ones fails
• WLCSP100 RF BLE overconsumption
• WLCSP100 noise coupling in LDO configuration at specific conditions
• One-pulse mode trigger not detected in master-slave reset + trigger

configuration
• Consecutive compare event missed in specific conditions
• Output compare clear not working with external counter reset
• OVR flag not set in underrun condition
• Transmission stalled after first byte transfer
• ESOF interrupt timing desynchronized after resume signaling
• Incorrect CRC16 in the memory buffer
• Device not responding to USB messages to its endpoint 0xF

Added Table 4. Summary of device documentation errata.

Modified:
• Table 3. Summary of device limitations to reflect modifications in

Section 2 Description of device errata
• erratum VDIV or VSQRT instructions might not complete correctly when

very short ISRs are used - workaround corrected
• erratum First double‑word of Flash memory corrupted upon reset or

power-down while programming - description and workaround updated
• erratum START bit is cleared upon setting ADDRCF, not upon address

match moved to Table 4
• erratum Possible packet memory overrun/underrun at low APB

frequency modified and moved to Table 4

17-Feb-2020 6

Add errata in Section 2 Description of device errata and Table 3. Summary of
device limitations:
• FLASH_ECCR corrupted upon reset or power-down occurring during

Flash memory program or erase operation
• A system reset occurs when nRST_SHDW is set and nRST_STDBY is

cleared and Shutdown mode is entered
• PH3 signal transitions disturb LSE
• WLCSP100 PA2 signal transitions disturb LSE

Updated errata title in Section 2 Description of device errata and
Table 3. Summary of device limitations :
• WLCSP100 RF BLE overconsumption
• WLCSP100 noise coupling in LDO configuration at specific conditions

Removed erratum from Section 2 Description of device errata:
• First double‑word of Flash memory corrupted upon reset or power-down

while programming

23-Jul-2020 7

Added errata in Section 2 Description of device errata and Table 3. Summary
of device limitations:
• Anticipated end-of-transmission signaling in SPI slave mode
• Data corruption due to noisy receive line
• Incorrect exit from Stop modes when the DBGMCU/DBG_STOP is

enabled

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx

ES0394 - Rev 8 page 26/31

Date Version Changes
• HSE is switched on immediately on Stop 2 exit, causing an undesired

over-consumption
• When VDD exceeds 2.5V in LDO configuration a glitch on HSE may

create a hard fault on M4/M0
• WLCSP100 when SMPS is in bypass mode a glitch on HSE create a

hard fault on M4/M0

Coverage of STM2WB35Cx.

07-May-2021 8

• Corrected pin name typo in WLCSP100 PA2 signal transitions disturb
LSE

• Removed WLCSP100 from title of limitation When VDD exceeds 2.5V in
LDO configuration a glitch on HSE may create a hard fault on M4/M0

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx

ES0394 - Rev 8 page 27/31

Contents

1 Summary of device errata. .2

2 Description of device errata. .5

2.1 Core 1. 5

2.1.1 Interrupted loads to SP can cause erroneous behavior . 5

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used . 5

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt 6

2.2 System . 7

2.2.1 LSI2 not usable as RF low-power clock. 7

2.2.2 Unstable LSI1 when it clocks RTC or CSS on LSE . 7

2.2.3 Internal voltage reference corrupted upon Stop mode entry with temperature sensing
enabled . 8

2.2.4 Full JTAG configuration without NJTRST pin cannot be used . 8

2.2.5 Auto-incrementing feature of the debug port cannot span more than 1 Kbyte 8

2.2.6 PC13 signal transitions disturb LSE . 9

2.2.7 Wrong DMAMUX synchronization and trigger input connections to EXTI 9

2.2.8 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line 48 event. 9

2.2.9 Flash OPTVERR flag is always set after system reset . 9

2.2.10 Overwriting with all zeros a Flash memory location previously programmed with all ones
fails . 10

2.2.11 WLCSP100 RF BLE overconsumption . 10

2.2.12 WLCSP100 noise coupling in LDO configuration at specific conditions. 10

2.2.13 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory
program or erase operation. 11

2.2.14 A system reset occurs when nRST_SHDW is set and nRST_STDBY is cleared and
Shutdown mode is entered . 11

2.2.15 PH3 signal transitions disturb LSE . 11

2.2.16 WLCSP100 PA2 signal transitions disturb LSE . 11

2.2.17 Incorrect exit from Stop modes when the DBGMCU/DBG_STOP is enabled 11

2.2.18 HSE is switched on immediately on Stop 2 exit, causing an undesired over-consumption 12

2.2.19 When VDD exceeds 2.5V in LDO configuration a glitch on HSE may create a hard fault on
M4/M0. 12

2.2.20 WLCSP100 when SMPS is in bypass mode a glitch on HSE create a hard fault on M4/M0 .
. 12

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Contents

ES0394 - Rev 8 page 28/31

2.3 DMA . 13

2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global
flag clear . 13

2.4 DMAMUX . 13

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register . 13

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request 13

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register . 14

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding
with synchronization event . 14

2.5 QUADSPI . 14

2.5.1 First nibble of data not written after dummy phase . 14

2.5.2 Wrong data from memory-mapped read after an indirect mode operation. 15

2.5.3 Memory-mapped read operations may fail when timeout counter is enabled 15

2.5.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register 15

2.6 ADC . 15

2.6.1 Wrong ADC result if conversion done late after calibration or previous conversion 15

2.7 TIM . 16

2.7.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration 16

2.7.2 Consecutive compare event missed in specific conditions . 16

2.7.3 Output compare clear not working with external counter reset . 16

2.8 LPTIM . 17

2.8.1 Device may remain stuck in LPTIM interrupt when entering Stop mode 17

2.8.2 Device may remain stuck in LPTIM interrupt when clearing event flag 17

2.9 RTC and TAMP . 18

2.9.1 RTC interrupt can be masked by another RTC interrupt . 18

2.9.2 Calendar initialization may fail in case of consecutive INIT mode entry 19

2.9.3 Alarm flag may be repeatedly set when the core is stopped in debug 19

2.10 I2C . 20

2.10.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock
period . 20

2.10.2 Spurious bus error detection in master mode . 20

2.10.3 Spurious master transfer upon own slave address match . 20

2.10.4 START bit is cleared upon setting ADDRCF, not upon address match 21

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Contents

ES0394 - Rev 8 page 29/31

2.10.5 OVR flag not set in underrun condition . 21

2.10.6 Transmission stalled after first byte transfer . 22

2.11 USART . 22

2.11.1 Anticipated end-of-transmission signaling in SPI slave mode . 22

2.11.2 Data corruption due to noisy receive line. 22

2.12 SPI . 22

2.12.1 BSY bit may stay high when SPI is disabled . 22

2.12.2 BSY bit may stay high at the end of data transfer in slave mode. 23

2.12.3 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters .
. 23

2.13 USB. 24

2.13.1 Possible packet memory overrun/underrun at low APB frequency 24

2.13.2 ESOF interrupt timing desynchronized after resume signaling . 24

2.13.3 Incorrect CRC16 in the memory buffer . 24

2.13.4 Device not responding to USB messages to its endpoint 0xF . 24

Revision history .26

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx
Contents

ES0394 - Rev 8 page 30/31

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

 STM32WB55Cx STM32WB55Rx STM32WB55Vx STM32WB35Cx

ES0394 - Rev 8 page 31/31

http://www.st.com/trademarks

	1 Summary of device errata
	2 Description of device errata
	2.1 Core 1
	2.1.1 Interrupted loads to SP can cause erroneous behavior
	2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
	2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt

	2.2 System
	2.2.1 LSI2 not usable as RF low-power clock
	2.2.2 Unstable LSI1 when it clocks RTC or CSS on LSE
	2.2.3 Internal voltage reference corrupted upon Stop mode entry with temperature sensing enabled
	2.2.4 Full JTAG configuration without NJTRST pin cannot be used
	2.2.5 Auto-incrementing feature of the debug port cannot span more than 1 Kbyte
	2.2.6 PC13 signal transitions disturb LSE
	2.2.7 Wrong DMAMUX synchronization and trigger input connections to EXTI
	2.2.8 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line 48 event
	2.2.9 Flash OPTVERR flag is always set after system reset
	2.2.10 Overwriting with all zeros a Flash memory location previously programmed with all ones fails
	2.2.11 WLCSP100 RF BLE overconsumption
	2.2.12 WLCSP100 noise coupling in LDO configuration at specific conditions
	2.2.13 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory program or erase operation
	2.2.14 A system reset occurs when nRST_SHDW is set and nRST_STDBY is cleared and Shutdown mode is entered
	2.2.15 PH3 signal transitions disturb LSE
	2.2.16 WLCSP100 PA2 signal transitions disturb LSE
	2.2.17 Incorrect exit from Stop modes when the DBGMCU/DBG_STOP is enabled
	2.2.18 HSE is switched on immediately on Stop 2 exit, causing an undesired over-consumption
	2.2.19 When VDD exceeds 2.5V in LDO configuration a glitch on HSE may create a hard fault on M4/M0
	2.2.20 WLCSP100 when SMPS is in bypass mode a glitch on HSE create a hard fault on M4/M0

	2.3 DMA
	2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag clear

	2.4 DMAMUX
	2.4.1 SOFx not asserted when writing into DMAMUX_CFR register
	2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request
	2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register
	2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding with synchronization event

	2.5 QUADSPI
	2.5.1 First nibble of data not written after dummy phase
	2.5.2 Wrong data from memory-mapped read after an indirect mode operation
	2.5.3 Memory-mapped read operations may fail when timeout counter is enabled
	2.5.4 Memory-mapped access in indirect mode clearing QUADSPI_AR register

	2.6 ADC
	2.6.1 Wrong ADC result if conversion done late after calibration or previous conversion

	2.7 TIM
	2.7.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration
	2.7.2 Consecutive compare event missed in specific conditions
	2.7.3 Output compare clear not working with external counter reset

	2.8 LPTIM
	2.8.1 Device may remain stuck in LPTIM interrupt when entering Stop mode
	2.8.2 Device may remain stuck in LPTIM interrupt when clearing event flag

	2.9 RTC and TAMP
	2.9.1 RTC interrupt can be masked by another RTC interrupt
	2.9.2 Calendar initialization may fail in case of consecutive INIT mode entry
	2.9.3 Alarm flag may be repeatedly set when the core is stopped in debug

	2.10 I2C
	2.10.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period
	2.10.2 Spurious bus error detection in master mode
	2.10.3 Spurious master transfer upon own slave address match
	2.10.4 START bit is cleared upon setting ADDRCF, not upon address match
	2.10.5 OVR flag not set in underrun condition
	2.10.6 Transmission stalled after first byte transfer

	2.11 USART
	2.11.1 Anticipated end-of-transmission signaling in SPI slave mode
	2.11.2 Data corruption due to noisy receive line

	2.12 SPI
	2.12.1 BSY bit may stay high when SPI is disabled
	2.12.2 BSY bit may stay high at the end of data transfer in slave mode
	2.12.3 Wrong CRC in full-duplex mode handled by DMA with imbalanced setting of data counters

	2.13 USB
	2.13.1 Possible packet memory overrun/underrun at low APB frequency
	2.13.2 ESOF interrupt timing desynchronized after resume signaling
	2.13.3 Incorrect CRC16 in the memory buffer
	2.13.4 Device not responding to USB messages to its endpoint 0xF

	Revision history

