
Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 1

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Made for blockchain NFC: manual
Powered by Tangem, provided by Gimly

G I M L Y

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 2

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Contents
1. Gimly: Tangem implementation partner ... 5

2. Made-for-blockchain NFC summary .. 6

2.1 General life cycle ... 7

2.2 NFC communication protocol: .. 8

2.3 Card commands and personalisation options: .. 9

3. Security ... 10

3.1 General .. 10

3.2 Card attestation ... 10

3.3 Issuers ... 10
3.3.1 Issuer transaction key .. 11
3.3.2 Issuer data key ... 11

3.4 Acquirer ... 12
3.4.1 Acquirer key .. 12
3.4.2 Card shared secret key .. 12

3.5 Wallet key ... 12

3.6 User’s codes ... 13
3.6.1 PIN1 code .. 13
3.6.2 PIN2 code .. 14
3.6.3 PIN3 code .. 14
3.6.4 CVC code.. 14

3.7 Linked terminal .. 15

3.8 Security Delay .. 15

4. NFC communication .. 16

4.1 General .. 16

4.2 TLV format (SimpleTLV) ... 16

4.3 Non-encrypted request .. 17

4.4 Fast encrypted request .. 18

4.5 Strong encrypted request .. 19

4.6 OPEN_SESSION command .. 20
4.6.1 Fast Encryption .. 20
4.6.2 Strong Encryption .. 21

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 3

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

4.7 Pending security delay ... 21

5. Personalization .. 23

5.1 UID and CID ... 23

5.2 NDEF records ... 23

5.3 Card_Data .. 24

6. Dynamic NDEF ... 25

7. Activation .. 27

8. Commands... 27

8.1 ACTIVATE_CARD .. 28

8.2 READ_CARD ... 29

8.3 CREATE_WALLET .. 38

8.4 CHECK_WALLET ... 40

8.5 SET_PIN ... 42

8.6 SIGN .. 43
8.6.1 Wallet Mode .. 44
8.6.2 POS mode .. 47

8.7 READ_ISSUER_DATA .. 49
8.7.1 Read issuer extra data ... 51

8.8 WRITE_ISSUER_DATA .. 53
8.8.1 Write issuer extra data .. 54

8.9 VERIFY_CODE ... 56

8.10 VERIFY_CARD ... 57

8.11 VALIDATE_CARD .. 58

8.12 PURGE_WALLET ... 59

8.13 READ_USER_DATA ... 60

8.14 WRITE_USER_DATA ... 61

9 Appendix A – Dynamic NDEF .. 62

9.1 General description ... 62

9.2 Example (card with PIN set): .. 64

9.3 Example (before wallet creation): .. 64

9.4 Example (after wallet creation): ... 65

10. Appendix B – CRC-A ... 66

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 4

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

11. Appendix C – Verification of Luhn code ... 67

12. Appendix D - Examples .. 67

12.1 Read command .. 67

13. Appendix E – Private files for SSI and other applications ... 70

13.1 File writing ... 71

13.2 File reading .. 72

13.3 File deleting ... 74

13.4 Changing file privacy .. 75

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 5

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

1. Gimly: Tangem implementation partner
Gimly is official Tangem supplier and integration partner. Gimly helps clients and partners identify and
realise the added value of made-for-blockchain NFC and IoT, by:

1. End-to-end solutions development:
o Use case and product definition, and full development services.

2. Technology partnering:
o Joint use case and product definition;
o Supply of pre-programmed NFC tags, stickers, or cards: low volumes for testing and

piloting;
o Supply of fully programmable NFC developer cards: low volumes for testing and

piloting;
o High volume supply of personalised made-for-blockchain NFC tags, stickers, or cards,

with customised settings and design: high volumes for operational environments.

Get in touch with Gimly to start building with Tangem here: https://www.gimly.io/tangem-by-gimly.

https://www.gimly.io/tangem-by-gimly

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 6

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

2. Made-for-blockchain NFC summary
With Tangem made-for-blockchain NFC chips, physical objects can interact securely and directly with
digital blockchains. No third layer, cloud service, or back-end needed for key management and
signature generation. The private key is securely generated within the chip, cannot be extracted, and
is used to sign blockchain transactions directly from the chip. Contrary to other crypto tags, Tangem
made-for-blockchain NFC chips do not only allow for authentication through challenge response
schemes, but they can sign multiple types of transactions directly from the chip. They offer a wide range
of additional security, 2fa and data security functions, and are available as physical cards, tags or
stickers. With their different form factors and broad functionality, they open up a wide range of use
cases, including anti-counterfeiting, supply chain and logistics, and identity solutions.

• Sign blockchain transactions: raw/hashed/single/arrays of transactions directly from the chip.
• Support sec256k1 and ed25519 cryptographic curves.
• Authenticity: prove product and chip authenticity through challenge response.
• Data storage: sign and store encrypted or raw data on chip.
• 2FA: allow only transactions or data validated through issuer signature.
• Other security functions: Security delays, PIN codes, CVC codes.
• EAL6+ certified secure smart-card chip based on ARM SC000 core architecture and having

ISO14443 Type A contactless interface.
• SSI cards: support for decentralized identifyers (DIDs) and Verifyable Credentials (VCs) for self-

sovereign identity (SSI) solutions. See Appendix E: WRITE_FILEDATA for writing private files
(supported with firmware version 3.29+).

• SDKs for integrating Tangem technology in your solutions here: https://github.com/Gimly-
Blockchain/Tangem-Blockchain-NFC.

The Tangem card is a self-custodial hardware wallet for blockchain assets. The main functions of
Tangem cards are to securely create and store a private key from a blockchain wallet and sign
blockchain transactions. Tangem card does not allow users to import/export, backup/restore private

https://github.com/Gimly-Blockchain/Tangem-Blockchain-NFC
https://github.com/Gimly-Blockchain/Tangem-Blockchain-NFC

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 7

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

keys, in this way guarantying that the wallet is unique and unclonable. Above this, the cards provide
mechanisms to implement two-factor authentication of transactions, off-line validation of wallet
balance, protection against counterfeit and cloning, secure signing of transactions on POS devices, and
more. All these capabilities are described in this document.

The cards carry an EAL6+ certified secure smart-card chip based on ARM SC000 core architecture and
having ISO14443 Type A contactless interface. Tangem’s card firmware is a native card OS (COS)
providing operations with a blockchain wallet and a proprietary communication protocol on top of
ISO14443 to interact with a contactless terminal (host). Once loaded into a particular card, COS binary
code cannot be updated or managed.

The host application (App), which is almost always installed on an NFC smartphone, provides UI and
interaction with the card via Android or iOS NFC interface. Tangem NFC protocol is not compatible with
older Android smartphones having NFC modules that do not support long (> 261 bytes) APDUs. Due to
the fact that old iOS versions support only read-only NDEFs, functionality on old iOS is limited to the
reading of the card and non-strict balance validation by using a mechanism described in section
Dynamic NDEF. Beginning from iOS 13, all NFC-enabled iPhone devices support all features of the
Tangem NFC protocol.

2.1 General life cycle
In the initial state, right after the COS is loaded, the card’s Status is set to ‘New’. In this status, the card
will only accept PERSONALIZE command from the host. This command can be executed only once to
define the principal parameters of the card. Host must pass all parameters AES256-encrypted with
Personalization_Key in one request payload. Once the command is executed, these parameters
become read-only, and the card is rendered to the initial state of the main cycle with Status set to
‘Empty’. At this moment, the card is ready for operation by the end-user and contains all data except
for the blockchain wallet keys.

App must request COS to generate a wallet key pair by calling CREATE_WALLET command. This
command will render the card to ‘Loaded’ state and return wallet’s public key to the user, who can top
up the newly created wallet in the blockchain using any third-party wallet app. In a default
configuration, COS is not aware of incoming transactions and wallet balance, although COS provides
two optional mechanisms to store trusted balance on-card and enable offline balance verification
(described below). COS in ‘Loaded’ state supports all commands, including SIGN. Calling SIGN
command will make COS generate and return a transaction signature.

If the card depletes the number of allowed signatures defined during personalization, or if the user
opts to delete the wallet by calling PURGE_WALLET command, COS will destroy all wallet data and
switch either to ‘Purged’ state, or back to ‘Empty’ state, depending on the reusability option that is
also defined during personalization. ‘Purged’ state is final, it makes the card useless.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 8

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

2.2 NFC communication protocol:
NFC protocol is adapted from ISO14443-3 layer, not fully compliant with ISO14443-4. It has a
proprietary set of features tailored to blockchain usage. The protocol contains only atomic commands,
meaning that every command makes some complete action, and either is fully executed or fully rolls
back to the previous card state.

• App should obtain 4-byte card UID code when initially establishing communication via
ISO14443-3 stack.

• Standard ISO7816-4 format is used for all requests: [CLA, INS, P1, P2, Lc, Payload].
Maximum length of command is limited to 1024 bytes.

• Payload in TLV format <Tag, Length, Value>, where:
• Tag - 1 byte - field ID,
• Length - 1 or 3 bytes - value length
• Value - [Length] byes - field value.
• Field value format:
• The most significant byte value is at the lowest address (Big-endian)
• Strings can be null-terminated in utf-8 encoding
• Public key - as uncompressed (0x04, X[32], Y[32]) for ‘secp256k1’ curve or as

compressed X[32] for ‘ed25519’ curve
• Signature - as (R[32], S[32])
• Example, Read_Card Request :

• COS supports three options of communication. App can select encryption mode by
setting the corresponding P2 parameter in a command request. If the card does not
support chosen encryption mode, it will respond with error status word
SWNEEDENCRYPTION = 0x6982

Encryption modes:

1. Plain data packets with non-encrypted Payload: This option is not recommended for
large-scale commercial projects, because it potentially exposes the card to
eavesdropping and replay attacks.

2. Fast symmetric encryption with mutual challenges: If non-default PIN1 is set, the
communication is encrypted by AES256 and safely protected against man-in-the-
middle and replay attacks. Packets could be potentially eavesdropped and decrypted
later by brute-forcing weaker PIN1 codes. However, this attack has little practical
meaning. Fast encryption is optimal for most use cases.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 9

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

3. Strong encryption (default mode) with ECDH shared secret (elliptic curve Diffie-
Hellman): Communication is encrypted by AES256 and fully protected against
eavesdropping, man-in-the-middle and replay attacks. The downside is 2x lower
performance and longer card’s reaction time.

2.3 Card commands and personalisation options:
Note: INS for personalisation command not currently available. However, Gimly provides the Tangem
developer app for personalization with every developer kit.

Software should be able to call all COS commands, plus Personalize command:

1. Personalize
2. ACTIVATE_CARD (INS code: 0xFE)
3. READ_CARD: (INS code: 0xF2)
4. CREATE_WALLET : (INS code: 0xF8)
5. CHECK_WALLET : (INS code: 0xF9)
6. SET_PIN : (INS code: 0xFA)
7. SIGN

1. Wallet mode (INS code: 0xFB)
2. POS mode (INS code: 0xFB)

8. READ_ISSUER_DATA (INS code: 0xFB)
1. Read issuer extra data (INS code: 0xF7)

9. WRITE_ISSUER_DATA (INS code: 0xF6)
1. Write issuer extra data (INS code: 0xF6)

10. VERIFY_CODE (INS code: 0xF5)
11. VERIFY_CARD (INS code: 0xF3)
12. VALIDATE_CARD (INS code: 0xF4)
13. PURGE_WALLET (INS code: 0xFC)
14. READ_USER_DATA (INS code: 0xE1)
15. WRITE_USER_DATA (INS code: 0xE0)
16. (NEW) WRITE_PRIVATEFILE

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 10

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

3. Security

3.1 General
Tangem card guarantees that it is the only place in the world that holds the private key of the
blockchain wallet (address). Therefore, it is not possible to export, import, backup, restore, derive or
in some other way gain access to the wallet private key. Loss or physical destruction of the card is
equivalent to loss of the wallet’s funds.

Tangem cards pass rigorous testing and can withstand environmental extremes and occasional
mechanical deformation within limits defined in ISO7810 standard. It is recommended to avoid
intentional bending with force and exposure to temperatures above 80C, powerful X-rays and
magnetic field (e.g. MRI). The cards’ microprocessor employs many anti-tampering mechanisms that
can recognize various types of attacks. Tangem COS will react to attempts of such attacks according to
its severity. In some situations, the card will permanently erase all wallet data in order to prevent
unauthorized access to the private key. Cards will also withstand unpredicted power outage that may
occur when NFC field or the host device is removed from the card. On-card data integrity is protected
by a proprietary anti-tearing mechanism and triple storage redundancy. Embedded non-volatile
memory (NVM) is certified and tested for 20 years of the data retention period.

3.2 Card attestation
In the process of manufacturing, every new Tangem card internally generates a Card Key pair
Card_PublicKey / Card_PrivateKey. The private key Card_PrivateKey is permanently stored in the card
memory and is not accessible to external applications via NFC interface. At the same time, Tangem
publishes the list of CID and corresponding Card_PublicKey values in its card attestation service and/or
hands over this list to the card Issuer.

To attest the card, app should:

1. call READ_CARD command to obtain CID and Card_PublicKey
2. call VERIFY_CARD command to ensure the card has not been counterfeited: by using the

standard challenge-response scheme, the card proves possession of Card_PrivateKey that
corresponds to Card_PublicKey returned by READ_CARD command,

3. ensure that the card’s CID presents and corresponds to Card_PublicKey in published Tangem’s
card list, through either Tangem attestation service or Issuer’s own service,

4. optionally, in offline, verify Manufacturer_Signature using non-secret
Manufacturer_PublicKey stored in the app.

3.3 Issuers
Issuer is a third-party team or company wishing to use Tangem cards in their project or business.
Issuers would have their own distribution channel and can tailor Tangem solution to their needs:

• to choose a type of blockchain assets Tangem card carries (e.g. ERC20 tokens),

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 11

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

• to integrate Tangem cards into own mobile host application connected to issuer’s own
server back-end or some third-party nodes/services,

• to order customized cards from Tangem: it could be a new graphic design and
personalization parameters that depend on the issuer’s use-case and security model.

• Tangem will remain responsible only for the card’s security and card attestation
process.

3.3.1 Issuer transaction key
Tangem cards support the optional security mechanism allowing the issuer to authorize transactions
before they are signed by the user. In case the issuer opts to utilize this mechanism, the issuer has to
generate Issuer Transaction Key pair Issuer_Transaction_PublicKey / Issuer_Transaction_PrivateKey
either for each card or for the whole batch. The private key Issuer_Transaction_PrivateKey is
permanently stored in a secure back-end of the issuer (e.g. HSM). The public key
Issuer_Transaction_PublicKey is securely written into the Tangem card during personalization by
Tangem and will be permanently stored there throughout the whole card life cycle, with no access by
host application via NFC interface.

App shall call READ_CARD command to get Signing_Method parameter that defines what data should
be submitted to SIGN command. If Signing_Method is ‘2’, ‘3’, ‘4’, or ‘5’, then the card will sign only
those data previously signed by the issuer. App has to obtain issuer’s signature of the data from the
issuer’s own back-end services before submitting it to SIGN command. This mechanism enables two-
factor authentication of transactions by using external issuer services.

3.3.2 Issuer data key
Issuer may also use a special 512-byte memory block Issuer_Data to securely store and update
information in COS. For example, this mechanism could be employed for enabling off-line validation of
the wallet balance and attesting of cards by the issuer (in addition to Tangem’s attestation). The issuer
should define the purpose of use, payload, and format of Issuer_Data field. Note that Issuer_Data is
never changed or parsed by the executable code the Tangem COS.

The issuer has to generate single Issuer Data Key pair Issuer_Data_PublicKey / Issuer_Data_PrivateKey,
same for all issuer’s cards. The private key Issuer_Data_PrivateKey is permanently stored in a secure
back-end of the issuer (e.g. HSM). The non-secret public key Issuer_Data_PublicKey is stored both in
COS (during personalization) and issuer’s host application that will use it to validate Issuer_Data field
received from READ_ISSUER_DATA command.

In case the issuer opts to utilize Issuer_Data field, there are two options:

1. Issuer_Data is written into COS by host application by using WRITE_ISSUER_DATA command.
This option works only if Signing_Method is set is ‘0’, ‘1’, ‘2’, or ‘3’. Issuer_Data can be either
permanent and defined during personalization, or updatable during the life cycle. Updating of
Issuer_Data should not be bound to a specific transaction and should tolerate unpredictable
delays caused by the end-user not tapping the card for a long period of time. The issuer’s host

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 12

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

application should obtain the signature Issuer_Data_Signature of Issuer_Data from issuer’s
own back-end services. This is not a part of the solution provided by Tangem team.

2. Issuer_Data is updated strictly during the execution of SIGN command. This option works only
if Signing_Method is set to ‘4’ or ‘5’. For this option, WRITE_ISSUER_DATA will not work and
will return error with status word SW_ERROR_PROCESSING_COMMAND = 0x6286

Version 2.30 and later.

Issuer may also use extended 32kB memory block Issuer_Extra_Data to securely store and update
information within the card. For example, this mechanism could be employed for storing personal
biometric data on ID cards. This memory can be marked as “write once” by specifying
RestrictOverwriteIssuerDataEx flag in SettingsMask.

3.4 Acquirer
Version 2.30 and later.

Acquirer is a trusted third-party company that operates proprietary (non-EMV) POS terminal
infrastructure and transaction processing back-end. Tangem cards personalized with the acquirer key
have a different flow of signing transactions received from host devices (POS terminals) authorized by
the acquirer. Most importantly, COS will not request PIN2 and will not require security delay protection
if SIGN command is called by such a trusted POS terminal. This way Tangem cards provide secure
instant single-tap payments on POS terminals.

3.4.1 Acquirer key
Optional acquirer public key can be loaded onto card during personalization and used to authorize
acquirer’s terminal. Acquirer signs a certificate of such terminal with the acquirer’s private key, then
securely uploads it into each POS terminal. If enabled by a flag in SettingsMask, the card will verify POS
terminal certificate signature with the acquirer’s public key before signing a POS transaction.

3.4.2 Card shared secret key
64-bytes secret key stored during the personalization process on both card and acquirer processing
server and used as a seed to encrypt POS transaction by COS and decrypt transaction by acquirer
processing server.

3.5 Wallet key
App shall call CREATE_WALLET command to turn an empty Tangem card into a ‘cold’ blockchain wallet
ready for top-up. This command will generate a wallet key pair Wallet_PublicKey / Wallet_PrivateKey.

The private key Wallet_PrivateKey is the main secret of the card. It is never revealed and accessible by
host application via NFC interface. COS will internally use Wallet_PrivateKey only during execution of
SIGN and CHECK_WALLET commands.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 13

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

App will need to obtain Wallet_PublicKey from the response of CREATE_WALLET or READ_CARD
commands and then transform it into an address of corresponding blockchain wallet according to a
specific blockchain algorithm.

Calling of PURGE_WALLET command will permanently delete the wallet key pair. If the card was
personalized as reusable (see Is_Reusable flag in Settings_Mask) then App may call CREATE_WALLET
command to generate a new wallet key pair.

3.6 User’s codes
COS provides three codes to protect the card: PIN1, PIN2, CVC. The application should submit one,
two, or all of these codes in command parameters in order to be authorized by COS.

The scheme of protection and personalization should be defined by the issuer as follows:

• what codes are required,
• how codes are used or changed by end-users,
• how codes are delivered to end-users,
• initial values of the codes set during personalization.

The card protects itself against brute force snigging of PIN1, PIN2, CVC codes. After each invalid code
is submitted, COS gradually increases the delay of response to all further commands until the correct
code is submitted. Therefore, the card will never block itself regardless of the number of invalid inputs.
However, when the correct code if submitted after a few invalid codes, the user will have to await
card’s response for the amount of time proportional to the number of prior invalid inputs. The
response delay will be set to zero only after the card receives the correct code.

Version 1.19 and later.

The delay of PIN1 response will not increase in case NFC encryption is disabled and host submits default
PIN1. PIN2 response delay will also not increase when host submits default PIN2. It this way, the host
can verify that the card has default PIN values without future delay penalty.

Version 2.30 and later.

COS provides additional PIN3 to protect the card in POS transaction process.

3.6.1 PIN1 code
This 32-byte code restricts access to the whole card. App must submit the correct value of PIN1 in each
command, including READ_CARD (at the moment, when CID is not yet known to the app). By default,
all cards have PIN1 set to SHA256(‘000000’), so that every host application on any NFC smartphone
could obtain card and wallet data. The end-user might optionally restrict access to the whole card and
all commands by setting a user’s PIN1 code. Issuer can disable changing PIN1 by defining a special
parameter during personalization (see Allow_SET_PIN1 flag in Settings_Mask).

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 14

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

A non-default PIN1 is required for remote card activation (in this case PIN1 is used as a card activation
key). If the card is used as a hardware wallet for storing high-value assets, it is also recommended to
require the end-user to set a non-default PIN1 at least eight characters long.

For additional security purposes, COS stores all wallet data, including Wallet_PrivateKey, in NVM
encrypted with AES256 key derived from PIN1.

3.6.2 PIN2 code
All cards will require submitting the correct 32-byte PIN2 code in order to sign a transaction or to
perform other commands entailing a change of the card state. App should ask the user to enter PIN2
before sending such commands to the card. The main purpose of using PIN2 is to protect against
proximity attack, during which an attacker tries to discreetly scan / detect Tangem cards with default
PIN1 in proximity and withdraw assets from such cards by signing a transaction.

Issuer can disable changing PIN2 by defining a special parameter during personalization
(Allow_SET_PIN2 flag in Settings_Mask). The recommended minimum length of user’s PIN2 is six
characters.

By default, all cards have PIN2 set to SHA256(‘000’). Default PIN2 should not be used if CVC and
Pause_Before_PIN2 are not used. If the card is being handed over between from one holder to another,
PIN2 should be temporarily set to a default value SHA256(‘000’), so that the receiving holder could
validate and change PIN1 and PIN2 codes by calling SET_PIN command. Once the new hold has the
card in possession, he/she should immediately set own secret PIN2.

3.6.3 PIN3 code
Version 2.30 and later.

When POS terminal request card to sign POS transaction and transaction amount exceed PIN3 floor
limit (PIN3_Floor_Limit) card additionally encrypt transaction signature with key derived from PIN3. In
this case, POS terminal shall request the user to enter PIN3 to confirm and decrypt POS transaction so
it can be broadcasted to blockchain.

See “SIGN – POS mode” section. See flow diagram in “Tangem Payment Flow v2.1.pdf” document.

3.6.4 CVC code
Issuer can require using a CVC code with non-transferrable cards (e.g. a personal reusable cold wallet
or one-off card). CVC code will be loaded into COS and printed on the card during personalization by
Tangem. CVC value is fixed during the whole card life cycle. If it is set, the card will require submitting
correct CVC code in order to sign a transaction or to perform other commands entailing a change of
the card state. App should verify if CVC is enabled (Use_CVC flag in Settings_Mask) and then ask the
user to enter CVC before sending such commands to the card.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 15

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

The purpose of using CVC is the same as for PIN2 – to protect the card against ‘drive by’ attack.
However, it allows keeping it more simple for the user. If PIN1 and PIN2 always stay default and never
asked in application UI, the user needs only to read and enter CVC printed on the card.

3.7 Linked terminal
Version 2.30 and later.

App can optionally generate ECDSA key pair Terminal_PrivateKey / Terminal_PublicKey. And then
submit Terminal_PublicKey to the card in any SIGN command. Once SIGN is successfully executed by
COS, including PIN2 verification and/or completion of security delay, the submitted
Terminal_PublicKey key is stored by COS. After that, the App instance is deemed trusted by COS and
COS will allow skipping security delay for subsequent SIGN operations thus improving convenience
without sacrificing security.

In order to skip security delay, App should use Terminal_PrivateKey to compute the signature of the
data being submitted to SIGN command for signing and transmit this signature in
Terminal_Transaction_Signature parameter in the same SIGN command. COS will verify the
correctness of Terminal_Transaction_Signature using previously-stored Terminal_PublicKey and, if
correct, will skip security delay for the current SIGN operation.

This behavior can be enabled by setting flag Skip_Security_Delay_If_Validated_By_Linked_Terminal in
Security_Mask.

3.8 Security Delay
COS provides a special mechanism to protect against proximity attack on a card with default or very
weak PIN1 and PIN2. For that, COS can enforce a “security delay” up to 60 seconds long between
reception and execution of a command. During the delay, the card shall be kept within NFC field of the
terminal and NFC session shall be active until the delay countdown is finished on the card.

See details in section “Pending security delay”.

There are a few flags in Setting_Mask field to control security delay behavior:

• Pause_Before_PIN2 enforces and defines the amount of the delay before COS executes any of
the commands protected by PIN2. It is recommended to apply at least 10 seconds delay if the
card assumes using the default PIN2. Pause_Before_PIN2 is defined during personalization.

• Smart_Security_Delay flag in Settings_Mask will make COS automatically disable the security
delay if non-default PIN2 is set on the card.

Version 2.05 and later

• Skip_Security_Delay_If_Validated_By_Issuer will skip security delay in SIGN command if the
issuer validates the transaction (for signing methods 2, 3, 4 and 5).

Version 2.30 and later

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 16

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

• Skip_Security_Delay_If_Validated_By_Linked_Terminal will skip security delay in SIGN
command if the transaction was signed by linked terminal (for signing methods 0, 1).

4. NFC communication

4.1 General
Tangem NFC protocol is based on ISO14443-3 layer, but do not fully comply with ISO14443-4. It has a
proprietary set of features tailored to blockchain usage. The protocol contains only atomic commands,
meaning that every command makes some complete action, and either is fully executed or fully rolls
back to the previous card state.

App should obtain 4-byte card UID code when initially establishing communication via ISO14443-3
stack.

Standard ISO7816-4 format is used for all requests: [CLA, INS, P1, P2, Lc, Payload]. Maximum length of
command is limited to 1024 bytes.

COS supports three options of communication:

1. Plain data packets with non-encrypted Payload:

This option is not recommended for large-scale commercial projects, because it potentially exposes
the card to eavesdropping and replay attacks.

2. Fast symmetric encryption with mutual challenges:

Version 1.16 and later.

If non-default PIN1 is set, the communication is encrypted by AES256 and safely protected against
man-in-the-middle and replay attacks. Packets could be potentially eavesdropped and decrypted later
by brute-forcing weaker PIN1 codes. However, this attack has little practical meaning. Fast encryption
is optimal for most use cases.

3. Strong encryption with ECDH shared secret (elliptic curve Diffie-Hellman):

Communication is encrypted by AES256 and fully protected against eavesdropping, man-in-the-middle
and replay attacks. The downside is 2x lower performance and longer card’s reaction time.

Every Tangem card supports strong encryption mode. Issuer can opt to enable fast encryption and
non-encrypted mode during personalization. App can choose desirable encryption mode among those
supported by the card by setting the corresponding P2 parameter in a command request as described
below. If the card does not support chosen encryption mode, it will respond with error status word
SW_NEED_ENCRYPTION = 0x6982.

4.2 TLV format (SimpleTLV)
TLV structure is a list of triples <Tag, Length, Value>, where:

• Tag - 1 byte - field ID,

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 17

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

• Length - 1 or 3 bytes - value length,
• Value - [Length] byes - field value.

Field value format:

• The most significant byte value is at the lowest address (Big-endian)
• Strings can be null-terminated in utf-8 encoding
• Public key - as uncompressed (0x04, X[32], Y[32]) for ‘secp256k1’ curve or as compressed

X[32] for ‘ed25519’ curve
• Signature - as (R[32], S[32])

4.3 Non-encrypted request
Tangem COS non-encrypted requests:

• CLA, P1, P2 = 0x00
• INS – command code

o 1 byte (e.g. READ_CARD = 0xF2, see Commands section)
• Lс – length of Payload

o 1 byte (length 1-255) or 3 bytes with extended coding [0x00, high, low]
• Payload – command parameters in TLV format

Tangem COS non-encrypted response:

• Response_Data – command response in TLV format
• Status_Word – command result (2 bytes, bigendian)

Status words used:

Status Bytes

SW_PROCESS_COMPLETED 0x9000

SW_NEED_ENCRYPTION 0x6982

SW_INVALID_PARAMS 0x6A86

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 18

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

SW_ERROR_PROCESSING_COMMAND 0x6286

SW_INVALID_STATE 0x6985

SW_PINS_NOT_CHANGED 0x9000

SW_PIN1_CHANGED 0x9001

SW_PIN2_CHANGED 0x9002

SW_PINS_CHANGED 0x9003

Version 2.30 and later.

SW_PIN3_CHANGED 0x9004

SW_PINS_CHANGED 0x900X, X – changed PINs mask (0x01-
PIN1, 0x02-PIN2, 0x04-PIN3)

SW_EXT_SIGN_BLOCKED 0x6983

Data types and structures:

• String values have maximum size of 16 bytes, 0x00 is the end symbol
• Public key – 65 bytes, elliptic curve point P(X,Y) in uncompressed format

o byte[0]=0x04
o byte[1..32] - X coordinate,
o byte[32..64] - Y coordinate

• Signature – 64 bytes [R[32],S[32]]

4.4 Fast encrypted request
Tangem COS fast encrypted request:

• CLA, P1 = 0x01, P2 = 0x00
• INS – command code - 1 byte
• Lс – length of Payload - 1 byte (length 1-255) or 3 bytes with extended coding [0x00, high, low]
• Payload:
1) Prepare tlv_data array by concatenating:

a. Length of TLV data (as per non-encrypted request format, see above) - 2 bytes
b. CRC16 of TLV data - 2 bytes

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 19

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

c. TLV data
2) Generate random 16-byte array [challengeA] in App, call OPEN_SESSION command with P2 =

0x01 and challengeA as a parameter,
3) COS will generate and return random 16-byte array [challengeB] as a response to

OPEN_SESSION command,
4) calculate protocol_key = PBKDF2(SHA256(PIN1), UID, 50), where UID - ISO 14443-3 unique

identifier,
5) calculate session_key = SHA256(challengeA | challengeB | protocol_key),
6) Payload = AES256(session_key, tlv_data).

Tangem COS fast encrypted response:

• Response_Data – contains concatenated:
- Length of response TLV data - 2 bytes
- CRC16 of response TLV data - 2 bytes
- AES256(session_key , response_tlv_data)

• Status_Word – command result (2 bytes, big-endian)

CRC16 of TLV data should always be verified both by App and COS to exclude dealing with corrupted
or tampered data. CRC16 in Tangem means CRC-A implementation of ISO 14443-3. See Java sample
code in the Appendix B.

4.5 Strong encrypted request
Tangem COS strong encrypted request:

• CLA, P1 = 0x02, P2 = 0x00
• INS – command code - 1 byte
• Lс – length of Payload -

o 1 byte (length 1-255) or 3 bytes with extended coding [0x00, high, low]
• Payload –
1) Prepare tlv_data array by concatenating:

- Length of TLV data (as per non-encrypted request format, see above) - 2 bytes

- CRC16 of TLV data - 2 bytes

- TLV data

2) Generate a key pair [privA, pubA] using secp256k1 curve in App,
3) Call OPEN_SESSION command with P2 = 0x02 and [pubA] key as a parameter,
4) COS will generate own a key pair [privB, pubB] and return [pubB] as a response to

OPEN_SESSION command,
5) Calculate shared_secret = privA * pubB as per ECDH protocol,
6) Calculate protocol_key = PBKDF2(SHA256(PIN1), UID, 50), where UID - ISO 14443-3 unique

identifier,
7) Calculate session_key = SHA256(shared_secret | protocol_key),

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 20

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

8) Payload = AES256(session_key, tlv_data).

Tangem COS strong encrypted response:

• Response_Data – contains concatenated:
- Length of response TLV data - 2 bytes
- CRC16 of response TLV data - 2 bytes
- AES256(session_key , response_tlv_data),

• Status_Word – command result (2 bytes, bigendian)

CRC16 of TLV data should always be verified both by App and COS to exclude dealing with corrupted
or tampered data.

4.6 OPEN_SESSION command
In case of encrypted communication, App should setup a session before calling any further command.
OPEN_SESSION command generates secret session_key that is used by both host and card to encrypt
and decrypt commands’ payload (see above).

Command INS code: 0xFF

4.6.1 Fast Encryption
P1=0x00

P2=0x01

Parameters:

Field Tag Type Description

ChallengeA 0x1A byte[16] Host’s challenge

Response:

Field Tag Type Description

ChallengeB 0x1B byte[16] Card’s challenge

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 21

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

UID 0x0B byte[4] Version 2.30 and later.

ISO 14443-3 unique
identifier – for
compatibility with
devices where UID is
hidden

4.6.2 Strong Encryption
P1=0x00

P2=0x02

Parameters:

Field Tag Type Description

pubA 0x1A byte[65] Public part of host key
pair in ECDH

Response:

Field Tag Type Description

pubB 0x1B byte[65] Public part of card key
pair in ECDH

UID 0x0B byte[4] Version 2.30 and later.

ISO 14443-3 unique
identifier – for
compatibility with
devices where UID is
hidden

4.7 Pending security delay
Version 1.16 and later.

In case a non-zero delay is set in Pause_Before_PIN2 personalization parameter, the host app should
continuously resend the same command request until the card executes it. After each interim request,

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 22

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

the card will wait for ~1 second and respond with SW_NEED_PAUSE = 0x9789 and a TLV structure
indicating remaining time of delay.

Version 1.21 and later.

The same mechanism applied in all commands to inform the host about all kinds of internal delays,
including increasing delay on wrong PIN1 and PIN2.

Response:

Field Tag Type Description

CID 0x01 byte[8] Card ID (only in version
1.19 and earlier)

Pause 0x1C Uint16 Remaining time, [10 x
ms]

SavedInNVM 0x28 0 bytes Version 2.30 and later.

Optional flag indicating
that COS has saved the
value of remaining
security delay in NVM.

Version 1.19 and earlier.

COS will return accordingly encrypted response if the command request has been encrypted with
either fast or strong method.

Version 1.21 and later.

COS will return unencrypted response.

If communication is lost during the delay pending, then COS will immediately lose the state of
countdown timer and restart it from the beginning after next command request.

Due to fluctuations of card’s CPU clock and NFC field, COS can follow Pause_Before_PIN2 quite
approximately in the range of -10% - +75%. Therefore, the host app should refrain from displaying the
exact remaining time and use an indicative progress bar instead.

Version 2.30 and later.

For compatibility with iOS 13 and later versions, COS saves the value of remaining security delay in
NVM every 5-10 seconds. COS additionally returns flag SavedInNVM if this value is stored. After the
NFC session between card and terminal has been lost or reset, COS will continue the security delay
countdown from the value stored in NVM if the first command received by COS coincide with the last
one received before the session reset.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 23

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

5. Personalization
These card parameters are defined by PERSONALIZE command:

CID, PIN1, PIN2, PIN3, Sign_Method,

NDEF, Card_Data,

Issuer_Data_PublicKey,

Issuer_Transaction_PublicKey,

Max_Signatures, Settings_Mask, Create_Wallet_At_Personalize,

Is_Activated, Pause_Before_PIN2

This section describes CID, NDEF, and Card_Data fields.

5.1 UID and CID
UID is 4-byte code required by ISO14443 standard. This code is randomly set only once during
personalization process. It is never used in Tangem protocol except for NFC communication channel
encryption key.

CID (Card ID) is a globally unique Tangem card number defined and printed (not embossed) by Tangem
during personalization. It has 8 byte length and uses all hex digits (0..F). Example: ‘AA00 0000 0001
6675’.

CID is encoded as SSSS NNNN NNNN NNNX, where:

• SSSS – batch number associated with the Issuer,
• NN..NN – unique card number within the batch,
• X – check digit according to Luhn algorithm, adapted to hex, see sample code in Appendix C.

5.2 NDEF records
During personalization, the issuer can define data of a static NDEF tag that will be emulated by COS if
some NFC terminal (smartphone) will ever request such tag from the card. It is also possible to fully
disable tag emulation. COS emulates NDEF format according to the NFC Forum standards:

• NFC Forum Type 4 Tag Operation Specification [NFCForum-TS-Type-4-Tag_2.0]
• NFC Data Exchange Format (NDEF) Technical Specification [NFCForum-TS-NDEF_1.0]

Default Tangem NDEF consists of two records:

1. URI, value - e.g. ‘https://tangem.com’
This record can be used to identify the card, even if there are no compatible applications
installed on the smartphone. It is also used by iOS for background tag scanning.

2. AAR (Android application record), value – e.g. ‘com.tangem.wallet’ for native Tangem
application (not used in iOS).

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 24

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

This record can be used to automatically open the corresponding App on the smartphone or
to proceed to a correct issuer’s application page on Google Play Store, if it’s not installed on
the smartphone.
This tag must be used with caution because an attacker distributing counterfeit Tangem cards
could potentially exploit it to mislead the user in downloading a counterfeit application.

5.3 Card_Data
Structure and payload of this nested TLV field shall be defined together by Tangem and the issuer
during personalization. App shall accordingly parse Card_Data field that is returned by READ_CARD
command. The following minimum set of parameters is required to identify the card and the issuer,
(native Tangem application will recognize these parameters):

Field Tag Type Description

Batch_ID 0x81 byte[2], hex Tangem internal
manufacturing batch
ID, should correspond
with the data in
Tangem’s card list (see
Card attestation and
UID and CID sections)

Manufacture_Date_Ti
me

0x82 byte[4] Timestamp of
manufacturing should
correspond with the
data in Tangem’s card
list (see Card
attestation section).

Format: Year (2 bytes) |
Month (1 byte) | Day (1
byte)

Issuer_Name 0x83 string, utf8 Name of the issuer

Blockchain_Name 0x84 string, utf8 Name of the blockchain
(once personalized, the
target blockchain is
fixed for the whole life
cycle)

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 25

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Manufacturer_Signatur
e

0x86 byte[64] Version 1.21 and later.

Signature of CID with
the
MANUFACTURER_PRIV
ATE_KEY

In some cases,
signature of (CID ||
Card_PublicKey) with
the
MANUFACTURER_PRIV
ATE_KEY

ProductMask 0x8A byte Version 2.30 and later

Mask of products
enabled on card

0x01-Note, 0x02-Tag,
0x04-ID card

The issuer could append this list if more identifying parameters are required. For example, it would
contain some data about a smart contact, if the issuer were going to store ERC20 tokens.

For example, native Tangem application will recognize the following additional parameters:

Field Tag Type Description

Token_Symbol 0xA0 string, utf8 Name of the token

Token_Contract_Addre
ss

0xA1 string, utf8 Smart contract address

Token_Decimal 0xA2 string, utf8 Number of decimals in
token value

6. Dynamic NDEF
Shall be supported ONLY on iOS versions 11 and 12. Other NFC smartphones shall not use this feature.

Tangem card supports a special wallet validation mechanism for smartphones that can only read NDEF
tags, specifically iPhones 7, 8, 10 with iOS version 11 or later. Issuer can enable it by setting
Use_Dynamic_NDEF flag in Settings_Mask.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 26

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

In addition to two Tangem card NDEF records defined by personalization (see Personalization section
for details), cards with dynamic NDEF will compose a third NDEF record for every new request of NDEF
by smartphone. Dynamic NDEF has following structure:

• NDEF type: NFC Forum External
• Value: ‘tangem.com:wallet’
• Payload:

- Status_Word – command result (2 bytes, bigendian), same result codes as for all
commands:

i. 0x9000 – OK
ii. 0x6A86 – TLV structure will not be returned because of some internal error,

e.g. the card is protected by non-default PIN1 (meaning that card and wallet
data is simply not accessible).

- TLV structure that contains:
i. CID, Card_Data, Card_PublicKey, Health parameters, if there’s no wallet has

been created (card’s Status is ‘Empty’), or
ii. A subset of parameters returned in responses of READ_CARD and

CHECK_WALLET commands
iii. VERSION 1.19 AND LATER included Wallet_Signed_Hashes field,
iv. VERSION 1.21 AND LATER included Settings_Mask and Max_Signatures fields,

Dynamic NDEF works only if the card PIN1 is set to the default value. In this case, COS internally
executes READ_CARD and CHECK_WALLET in order to compose the resulting TLV. The main point is
that COS has to generate a random Challenge for CHECK_WALLET by itself, instead of receiving it from
the application. This approach cannot guarantee full validation of the wallet, though provides a non-
strict one that could be sufficient in some use cases. Some additional measures can alleviate the risk
of attack of giving a counterfeit card or compromised wallet to a user who makes non-strict validation.
First, the application can require to read dynamic NDEF of the same card many times to ensure the
card generates different Challenges. In addition, there’s always a risk for the attacked that the user has
another fully functional NFC smartphone nearby.

Version 1.21 and later.

COS adapts to the limitation of tag response time in iOS 11.3.1. During the execution of
CREATE_WALLET command, COS internally executes CHECK_WALLET twice to pre-compute and store
two wallet signatures. If COS is unable to respond with the full TLV because of the host breaks the
connection, it will respond with one of two precomputed signatures at the next attempt and toggle
between two precomputed signature values at every next attempt. Although it is even less safe wallet
validation method, it allows to protect against cheap clones using static programmable NFC tags.

Version 2.01 and later.

Issuer can disable precomputed NDEF by setting Disable_PrecomputedNDEF flag in Settings_Mask.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 27

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

7. Activation
This mechanism allows safe physical transportation of the card through non-trusted environment. It
disables most of card’s commands from the moment of personalization and until the issuer confirms
to COS that the card has been activated. To use activation mode, the issuer should disable Is_Activated
flag during personalization. If it’s done, the card will accept only these three commands:

• READ_CARD command will return only these fields:
- CID,
- Manufacturer_ID,
- Status,
- Card_Data,
- Settings_Mask,
- Issuer_Data_PublicKey.

• READ_ISSUER_DATA,
• ACTIVATE_CARD

ACTIVATE_CARD command provides guaranteed mutual update of activation state in both COS and
issuer’s activation back-end.

Activation process works as follows:

1. App calls READ_CARD command and recognizes Is_Activated flag is disabled,
2. App sends a request containing CID and Activation_Seed to issuer’s activation back-end,
3. Issuer’s activation back-end activates (and optionally top-ups) the card and sends a signed

response to App,
4. App calls ACTIVATE_CARD command with the issuer’s response as a parameter,
5. COS parses issuer’s response and verifies its signatures; if it’s OK, the COS renders itself to

activated (fully functional) state.

In case of any interruption, App can safely restart this process from the beginning and repeat it until
the card is activated. Therefore, it is guaranteed that the issuer’s back-end will have completed all
required activation operations before the card is switched to activated state.

8. Commands
Tangem COS provides 15 commands available to end user’s host application and PERSONALIZE
command that sets main parameters in the beginning of the life cycle.

The end user might optionally restrict access to the whole card and all commands by setting user’s
PIN1 code. By default, all cards have PIN1 set to ‘000000’, so that every host application on any NFC
smartphone could obtain card and wallet data. In the beginning of communication session, App should
obtain card CID by calling READ_CARD command with hashed default PIN1. If the user has set a non-
default PIN1, READ_CARD command will return Status Word SW_INVALID_PARAMS (= 0x6A86). In such
case, the application should request correct PIN1 from the user and call READ_CARD command again,

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 28

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

this time with hashed PIN1 enter by the user. Once CID is obtained by READ_CARD command, the
application can call all other commands that require CID and hashed PIN1 as parameters.

All cards will require submitting correct user’s PIN2 code and (depending on personalization
parameters) printed CVC code in order to sign a transaction or to perform other commands entailing
change of the card state.App should ask the user to enter PIN2 and/or CVC before sending such
commands to the card. There should be no default value for PIN2 code, if either CVC or very long
Pause_Before_PIN2 delay are not used. See Security section for more details.

Commands can return the following Status Words in the result of execution:

• SW_PROCESS_COMPLETED = 0x9000
- successful execution

• SW_INVALID_PARAMS = 0x6A86
- wrong or not sufficient parameters in TLV request, or wrong PIN1/PIN2

• SW_ERROR_PROCESSING_COMMAND = 0x6286
- internal error, incl. wrong issuer signature

• SW_INVALID_STATUS = 0x6985
- command can not be executed in current card status

• SW_INS_NOT_SUPPORTED = 0x6D00
- wrong command INS code

8.1 ACTIVATE_CARD
This command activates the card if it requires activation (Is_Activated flag is disabled). The application
should go through an activation process in coordination with the issuer’s activation back-end (see
'Activation' section for details).

Command INS code: 0xFE

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID
number

PIN1 0x10 byte[32] Hashed user’s PIN1
code to access the card,

Default value should
not be used with this
command

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 29

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Reset_PIN1 0x36 byte[1] 0 – Do not change PIN1
used for activation (for
calling this command)

1 – Reset PIN1 to
default value (‘000000’)

Activation_Signature 0x34 byte[64] Concatenated (CID |
Activation_Seed |
Reset_PIN1) signed
with
Issuer_Transaction_Pri
vateKey;

If the signature is
successfully verified
with
Issuer_Transaction_Pu
blicKey, then
Is_Activated flag will be
enabled

Response:

Same as in READ_CARD command

8.2 READ_CARD
This command returns all data about the card and the wallet, including unique card number (CID) that
has to be submitted while calling all other commands. Therefore, READ_CARD should always be used
in the beginning of communication session between host and Tangem card.

In order to obtain card’s data, App should call READ_CARD command with correct PIN1 value as a
parameter. The card will not respond if wrong PIN1 has been submitted. See Security section for
details.

Command INS code: 0xF2

Parameters:

Field Tag Type Description

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 30

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

PIN1 0x10 byte[32] Hashed user’s PIN1
code to access the card.
Default unhashed
value: ‘000000’

Terminal_Public_Key 0x5C byte[65] VERSION 2.30 AND
LATER

Optional public key of
linked host terminal
(see ‘Linked terminal’
section)

If the card was linked to
the certain host
terminal,
Terminal_Public_Key
would have to be
passed. Otherwise, the
card will be unlinked,
and the next sign
command will perform
the security delay
mechanism.

See Linked terminal
section for more
details.

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Manufacturer_Name 0x20 string, utf8 Name of Tangem card manufacturer

Fixed: ‘Smart Cash’

Status 0x02 byte Current status of the card

[1 - Empty, 2 - Loaded, 3- Purged]

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 31

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Firmware_Version 0x80 string, utf8 Version of Tangem COS

Card_PublicKey 0x03 byte[65] Public key that is used to authenticate the card
against manufacturer’s database. It is
generated one time during card manufacturing.
See Security section for more details.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 32

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Settings_Mask 0x0A byte[2]

Version 2.01
and later.

byte[2] or
byte[4]

Card settings defined by personalization (bit
mask: 0 – Enabled, 1 – Disabled):

Is_Reusable = 0x0001

Defines what happens when user calls
PURGE_WALLET command:

0 - Card will switch to Purged state

1 - Card will switch to Empty state and let create
a new wallet again

Use_Activation = 0x0002

VERSION 2.01 AND LATER

Prohibit_Purge_Wallet = 0x0004

0 – Card will accept PURGE_WALLET command

1 – Card will reject PURGE_WALLET command

Use_Block = 0x0008

Allow_SET_PIN1 = 0x0010

Is user allowed to change PIN1 with SET_PIN
command

Allow_SET_PIN2 = 0x0020

Is user allowed to change PIN2 with SET_PIN
command

Use_CVC = 0x0040

All commands requiring PIN2 will also require
additional CVC code printed on the card

Prohibit_Default_PIN1 = 0x0080

SET_PIN commands will not change PIN1 to
default value (‘000000’).

Use_One_CommandAtTime = 0x0100

Card will execute only one command during one
communication session, thus requiring user to
physically take the card away from the host
after each action (all commands except for
READ_CARD).

Use_NDEF = 0x0200

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 33

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Whether the card should emulate NDEF. In
default configuration, two NDEF records are
loaded during personalization: (1) Tangem web
site address, (2) name of Android App package
in Google Play Store.

Use_Dynamic_NDEF = 0x0400

0 – Disable dynamic generation of NDEF for iOS.
See Dynamic NDEF section for more details.

1 – Enable dynamic NDEF for iOS.

Smart_Security_Delay = 0x0800

Security delay Pause_Before_PIN2 will not be
applied if PIN2 is not default.

Allow_Unencrypted = 0x1000

Whether the card supports unencrypted NFC
communication. See NFC communication
section for more details.

Allow_Fast_Encryption = 0x2000

Whether the card supports fast encrypted NFC
communication. See NFC communication
section for more details.

Protect_Issuer_Data_Against_Replay = 0x4000

VERSION 1.21 AND LATER

0 – No replay protection on write issuer data

1 – Enable replay protection on write issuer
data (card will require additional
Issuer_Data_Counter incremented on each
write)

Allow_Select_Blockchain = 0x8000

VERSION 2.01 AND LATER

0 – Wallet elliptic curve and blockchain
information stored during PERSONALIZE
command and never change

1 – Wallet elliptic curve and blockchain
information can be changed on
CREATE_WALLET command

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 34

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Disable_Precomputed_NDEF = 0x00010000

0 – Enable precomputed dynamic NDEF to work
around iPhone 7+ NFC bug.

1 – Disable precomputed dynamic NDEF. See
Dynamic NDEF section for more details.

Skip_Security_Delay_If_Validated_By_Issuer =
0x00020000

VERSION 2.05 AND LATER

0 – Enforce security delay in SIGN command if
the issuer validates the transaction (for signing
methods 2, 3, 4 and 5).

1 – Skip security delay in SIGN command if the
issuer validates the transaction (for signing
methods 2, 3, 4 and 5).

Skip_Check_PIN2_and_CVC_If_Validated_By_I
ssuer = 0x00040000

VERSION 2.05 AND LATER

0 – Require and check PIN2 and CVC in SIGN
command if the issuer validates the transaction
(for signing method 2, 3, 4 and 5).

1 – Skip checking PIN2 and CVC in SIGN
command if the issuer validates the transaction
(for signing method 2, 3, 4 and 5).

Skip_Security_Delay_If_Validated_By_Linked_
Terminal = 0x00080000

VERSION 2.30 AND LATER

1 - Store Terminal_PublicKey public key of
linked terminal no each SIGN command, skip
security delay if valid signature of transaction is
made with Terminal_PrivateKey is provided in
SIGN command

Restrict_Overwrite_Issuer_Extra_Data =
0x00100000

VERSION 2.30 AND LATER

1 – prohibit overwriting Issuer_Extra_Data

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 35

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Require_Term_Tx_Signature = 0x01000000

VERSION 2.30 AND LATER

0 – Skip checking terminal’s signature when
signing POS transaction

1 – Check terminal’s signature when signing POS
transaction

Require_Term_Cert_Signature = 0x02000000

VERSION 2.30 AND LATER

0 – Skip checking acquirer’s signature of
terminal certificate when signing POS
transaction

1 – Check acquirer’s signature of terminal
certificate when signing POS transaction

Check_PIN3_on_Card = 0x04000000

VERSION 2.30 AND LATER

0 – Additionally encrypt POS transaction
signature with key derived from PIN3 when the
transaction amount exceeds PIN3 floor limit

1 – Require terminal to send PIN3 to card when
the POS transaction amount exceeds
PIN3_Floor_Limit

Card_Data 0x0C byte[0..512] Detailed information about card contents.
Format is defined by the card issuer. Cards
complaint with Tangem Wallet application
should have TLV format described in
Personalization section.

Issuer_Data_PublicKey 0x30 byte[65] Public key that is used by the card issuer to sign
Issuer_Data field. See Security section for more
details.

Curve_ID 0x05 string, utf8 Explicit text name of the elliptic curve used for
all wallet key operations.

Supported curves: ‘secp256k1’, VERSION 2.01
AND LATER - ‘ed25519’

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 36

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Max_Signatures 0x08 uint32 Total number of signatures allowed for the
wallet when the card was personalized.

Signing_Method 0x07 byte Defines what data should be submitted to SIGN
command.

[0 - sign hash, 1 - sign raw transaction, 2 - sign
hash signed by issuer, 3 - sign raw signed by
issuer, 4 - sign hash signed by issuer and update
Issuer_Data, 5 - sign raw signed by issuer and
update Issuer_Data]

Version 2.05 and later.

Signing_Method can specify a set of allowed
methods. In this case, the highest bit in
Signing_Method value must be set to 1 and
each of bits 0..5 must be set to enable
corresponding signing methods. For example, if
Signing_Method = 0x95, COS allows
Signing_Method = 0, Signing_Method = 2,
Signing_Method = 4; if Signing_Method = 0xBF
– all methods are allowed.

Version 2.30 and later.

New Signing_Method value ‘6’ – sign POS
transactions (or bit #6 if multiple signing
methods are allowed)

Pause_Before_PIN2 0x09 byte[2] Delay in seconds before COS executes
commands protected by PIN2.

Wallet_PublicKey 0x60 byte[65]

Version 2.01
and later

byte[65] or
byte[32]

Public key of the blockchain wallet. Value
returned only if the wallet has already been
created by CREATE_WALLET command. See
Security section for more details.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 37

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Wallet_Remaining_Sig
natures

0x62 uint32 Remaining number of SIGN operations before
the wallet will stop signing transactions. Value
returned only if the wallet has already been
created by CREATE_WALLET command.

Wallet_Signed_Hashes 0x63 uint32 VERSION 1.16 AND LATER

Total number of signed single hashes returned
by the card in SIGN command responses since
card personalization. Sums up array elements
within all SIGN commands.

Health 0x0F byte[1] Any non-zero value indicates that the card
experiences some hardware problems. User
should withdraw the value to other blockchain
wallet as soon as possible. Non-zero Health tag
will also appear in responses of all other
commands.

Is_Activated 0x3A byte[1] Whether the card requires issuer’s confirmation
of activation.

0 – card will require issuer’s confirmation of
activation,

otherwise this field will not be returned (card is
activated and operational).

See ACTIVATE_CARD command for more
details.

Activation_Seed 0x3B byte[16] A random challenge generated by PERSONALIZE
command that should be signed and returned
to COS by the issuer to confirm the card has
been activated. See ACTIVATE_CARD command
for more details.

This field will not be returned if the card is
activated.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 38

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Payment_Flow_Versio
n

0x54 byte[2] VERSION 2.30 AND LATER

Version of POS payment scheme supported by
COS ([0x02,0x01] for version 2.30)

Returned only if SigningMethod ‘6’ enabling
POS transactions is supported by card.

User_Counter 0x2C uint32 VERSION 2.30 AND LATER

This value can be initialized by App and will be
increased by COS with the execution of each
SIGN command. For example, this field can
store blockchain “nonce” for a quick one-touch
transaction on POS terminals. Returned only if
SigningMethod =6.

User_Protected_Count
er

0x2D uint32 VERSION 2.30 AND LATER

This value can be initialized by App (with PIN2
confirmation) and will be increased by COS with
the execution of each SIGN command. For
example, this field can store blockchain “nonce”
for a quick one-touch transaction on POS
terminals. Returned only if SigningMethod =6.

Note: Parameters are included in the response depending on the card state:

• In the ‘New’ state: CID, Manufacturer_ID, Firmware_Version and Status fields are included,
• After personalization and before activation: additionally, Card_Data, Settings_Mask,

Issuer_Data_PublicKey, Is_Activated, Activation_Seed fields,
• After personalization and activation, all other parameters are included, except for

Wallet_PublicKey and Wallet_Remaining_Signatures.
• After a wallet is created, the Wallet_PublicKey and Wallet_Remaining_Signatures parameters

are included.

8.3 CREATE_WALLET
This command will create a new wallet on the card having ‘Empty’ state. A key pair Wallet_PublicKey
/ Wallet_PrivateKey is generated and securely stored in the card. App will need to obtain
Wallet_PublicKey from the response of CREATE_WALLET or READ_CARD commands and then
transform it into an address of corresponding blockchain wallet according to a specific blockchain
algorithm. Wallet_PrivateKey is never revealed by the card and will be used by SIGN and
CHECK_WALLET. Remaining_Signature is set to Max_Signatures.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 39

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Command INS code: 0xF8

Parameters:

Field Tag Type Description

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

CID 0x01 byte[8] Unique Tangem card ID number

PIN2 0x11 byte[32] Hashed user’s PIN2 code for signing and state-changing
operations. See Security section for more details.

CVC 0x19 byte[3] Optional 3-digit code printed on the card. Required if
Use_CVC flag is set in Settings_Mask.

VERSION 2.01 AND LATER

If Allow_Select_Blockchain flag is set in Settings_Mask then the card allows changing type of
blockchain in CREATE_WALLET command. The following parameters should must appended:

Curve_ID 0x05 string, utf8 New explicit text name of the elliptic curve used for all
wallet key operations.

Supported curves: ‘secp256k1’, ‘ed25519’

Card_Data 0x0C byte[0..512] Update to information about card contents in TLV
format described in Personalization section. Tags that
can be updated: Blockchain_Name, Token_Symbol,
Token_Contract_Address, Token_Decimal

If Card_Data contains other fields then command will
fail and return error SW_INVALID_PARAMS.

Issuer_Data_Signature 0x33 byte[64] Issuer’s signature (with ‘secp256k1’ and
Issuer_Data_PrivateKey) of SHA256-hashed Curve_ID
concatenated with Card_Data: SHA256(Curve_ID |
Card_Data).

Response:

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 40

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Status 0x02 byte Current status of the card

[1 - Empty, 2 - Loaded, 3- Purged]

Wallet_PublicKey 0x60 byte[65]

VERSION 2.01
AND LATER

or byte[32]

Public key of a newly created blockchain wallet. See
Security section for more details.

8.4 CHECK_WALLET
This command proves that the card possesses Wallet_PrivateKey corresponding to Wallet_PublicKey.
Standard challenge/response scheme is used.

Command INS code: 0xF9

Parameters:

Field Tag Type Description

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

CID 0x01 byte[8] Unique Tangem card ID number

Challenge 0x16 byte[16] Random challenge generated by host application

VERSION 2.01 AND LATER

Self-attestation is supported. If the following additional parameter is specified, CHECK_WALLET will
return Wallet_PublicKey signed by Card_PrivateKey:

Public_Key_Challenge 0x14 byte[16] or
byte[0]

Optional: Random challenge generated by host
application. If specified, this field presents then card will
return Card_Signature field in response

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 41

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Salt 0x17 byte[16] Random salt generated by the card

Wallet_Signature 0x61 byte[64] Signature of hashed concatenated Challenge and Salt with
Wallet_PrivateKey

For ‘secp256k1’ curve SHA256 is used, signature of
SHA256(Challenge | Salt)

For ‘ed25519’ curve SHA512 is used, signature of
SHA512(Challenge | Salt)

VERSION 2.01 AND LATER

If Public_Key_Challenge had been submitted:

Check_Wallet_Counter 0x64 byte[4] Counter of CHECK_WALLET command executions. A very
big value of this counter may indicate a hacking attempts.

Public_Key_Salt 0x15 byte[16] Random salt generated by the card

Optional, if in request presents non-empty
Public_Key_Challenge

Card_Signature 0x04 byte[64] Signature of hashed concatenated Wallet_PublicKey,
Public_Key_Challenge, Public_Key_Salt with
Card_PrivateKey

Optional, if in request presents Public_Key_Challenge

SHA256(Wallet_PublicKey | Public_Key_Challenge |
Public_Key_Salt) signed with Card_PrivateKey, if in request
presents non-empty Public_Key_Challenge

or

SHA256(Wallet_PublicKey) signed with Card_PrivateKey, if
in request presents empty Public_Key_Challenge

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 42

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

8.5 SET_PIN
This command changes PIN1 and PIN2 passwords if it is allowed by Allow_SET_PIN1 and
Allow_SET_PIN2 flags in Settings_Mask. Host application can submit unchanged passwords (New_PIN1
= PIN1 and New_PIN2 = PIN2) in order to check its correctness. Depending on the result, Status_Word
in the command response will have these values:

SW_PINS_NOT_CHANGED = 0x9000

SW_PIN1_CHANGED = 0x9001

SW_PIN2_CHANGED = 0x9002

SW_PINS_CHANGED = 0x9003

VERSION 2.30 AND LATER

SW_PIN3_CHANGED = 0x9004

SW_PINS_CHANGED = 0x90XX, XX – changed PINs mask (0x01-PIN1, 0x02-PIN2, 0x04-PIN3)

Command INS code: 0xFA

Parameters:

Field Tag Type Description

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value:
‘000000’

CID 0x01 byte[8] Unique Tangem card ID number

PIN2 0x11 byte[32] Hashed user’s PIN2 code for signing and state-changing operations. See
Security section for more details.

CVC 0x19 byte[3] Optional 3-digit code printed on the card.

Required if Use_CVC flag is set in Settings_Mask.

New_PIN1 0x12 byte[32] New hashed user’s PIN1 code to access the card.

New_PIN2 0x13 byte[32] New hashed user’s PIN2 code for signing and state-changing
operations.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 43

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

New_PIN3 0x1E byte[32] VERSION 2.30 AND LATER

Optional new hashed user’s PIN3 code for confirm POS operations.

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

8.6 SIGN
Depending on Signing_Method parameter defined during personalization, this command signs
following data using Wallet_PrivateKey:

• array of transaction hashes (Signing_Method = 0)
• single raw transaction (Signing_Method = 1)

In case the card issuer supports 2FA (see in Security section), COS will firstly verify issuer’s signature of
transaction hash before signing transaction hash using Wallet_PrivateKey. Following data should be
submitted to SIGN command in this case:

• array of transaction hashes signed by the issuer (Signing_Method = 2),
• single raw transaction signed by the issuer (Signing_Method = 3),

In case the card issuer requires the card to store additional data (e.g. wallet balance, SPV proof,
timestamps, etc. – see details in Security section), COS will verify (1) issuer’s signature of hash of
concatenated transaction hashes and Issuer_Data hash, and (2) issuer’s signature of Issuer_Data hash,
and then proceed to signing transaction hash using Wallet_PrivateKey. Following data should be
submitted to SIGN command in this case:

• array of transaction hashes and issuer data signed by the issuer (Signing_Method = 4),
• single raw transaction and issuer data signed by the issuer (Signing_Method = 5),

The raw transaction will be hashed by a hash function ‘Hash_Name’ before signing. In the generic COS
version described here, raw transactions are not parsed, analyzed or transformed by COS.
Simultaneous signing of array of hashes in a single SIGN command is required to support Bitcoin-type
multi-input blockchains. SIGN command will return a corresponding array of signatures. If COS cannot
validate issuer’s signature where it is required, SIGN command will return Status word
SW_ERROR_PROCESSING_COMMAND= 0x6286.

After data is signed and SIGN response is successfully sent to the host, COS decreases
Wallet_Remaining_Signatures counter by 1. When Remaining_Signatures counter reaches zero, SIGN
command will no longer generate any signatures for the wallet. COS always stores cached signature(s)
generated by the last SIGN command and return this cached result if SIGN command is called again

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 44

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

with empty parameters. In this way, the signature(s) can be restored in case App has lost the previous
SIGN response for any reason.

Version 2.05 and later.

Signing_Method can specify a set of allowed methods. In this case, the highest bit in Signing_Method
value must be set to 1 and each of bits 0..5 must be set to enable corresponding signing methods: bit
0 (lowest) – allow Signing_Method = 0, bit 1 – allow Signing_Method = 1 and so on. For example, if
Signing_Method = 0x95 COS allow Signing_Method = 0, Signing_Method = 2, Signing_Method = 4; if
Signing_Method = 0xBF – all methods are allowed. If more than one signing method is allowed, the
application can select a method by providing an appropriate set of parameters for SIGN command.

Version 2.30 and later.

New Signing_Method = 6 – “one-touch” signing of transaction received from trusted POS terminal (see
‘Acquirer' section and 'POS mode’ below)

[SIGN CONTINUED]

8.6.1 Wallet Mode
(Signing_Methods = 0, 1, 2, 3, 4, 5)

Command INS code: 0xFB

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

PIN2 0x11 byte[32] Hashed user’s PIN2 code for signing and state-changing
operations. See Security section for more details.

CVC 0x19 byte[3] Optional 3-digit code printed on the card.

Required if Use_CVC flag is set in Settings_Mask.

Transaction_
Hash_Size

0x51 byte[1] Length of a single hash to be signed (0x20 for SHA256).

Required if Signing_Method = 0, 2, 4

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 45

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Transaction_
Hash

0x50 byte[n*hash
_size]

Concatenated array of hashes to be signed.

Required if Signing_Method = 0, 2, 4

Transaction_
Raw

0x52 byte[1..512] Raw transaction to be hashed and signed.

Required if Signing_Method = 1, 3, 5

Hash_Name 0x06 byte[5..9] Text name of hash function to hash raw transaction,
supported value are ‘sha-256’, ‘sha-1’, ‘sha-224’, ‘sha-384’,
‘sha-512’. It’s possible to specify a double hashing by add ‘x2’
to the hash function name.

Required if Signing_Method = 1, 3, 5

Issuer_Data 0x32 byte[1..512] Some issuer’s data that must be stored in the card at the
moment of signing the transaction. May contain wallet
balance, SPV proof, timestamps, etc. This data is never
parsed, analyzed or transformed by COS. See Security
section for more details.

Issuer_Data_
Counter

0x35 int[4] VERSION 1.21 AND LATER

An internal counter received from READ_ISSUER_DATA
command. Must be signed by the issuer together with
Issuer_Data.

Required if Signing_Method = 4, 5.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 46

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Issuer_Transa
ction_Signatu
re

0x34 byte[64] If Signing_Method = 2

issuer’s signature of a hash of concatenated array of
transaction hashes:

SHA256(tx_hash_1 | … | tx_hash_n)

If Signing_Method = 3

issuer’s signature of a hash of raw transaction:
SHA256(tx_raw)

If Signing_Method = 4

issuer’s signature of a hash of concatenated array of
transaction hashes and Issuer_Data: SHA256(tx_hash_1 | …
| tx_hash_n | (Issuer_Data))

If Signing_Method = 5

issuer’s signature of a hash of concatenated hash of raw
transaction and Issuer_Data: SHA256(SHA256(tx_raw) | (
Issuer_Data))

Issuer_Data_
Signature

0x33 byte[64] Required if Signing_Method = 4, 5.

Version 1.19 and earlier.

Issuer’s signature of SHA256-hashed Issuer_Data
concatenated with CID:

SHA256(CID | Issuer_Data)

Version 1.21 and later.

Issuer’s signature of SHA256-hashed Issuer_Data
concatenated with CID and Issuer_Data_Counter :

SHA256(CID | Issuer_Data | Issuer_Data_Counter)

Terminal_Pub
licKey

0x5C byte[65] VERSION 2.30 AND LATER

Optional public key of linked host terminal (see ‘Linked
terminal’ section)

Only for Signing_Method = 0, 1

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 47

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Terminal_Tra
nsaction_Sign
ature

0x57 byte[64] VERSION 2.30 AND LATER

Optional transaction signature by linked host terminal (see
‘Linked terminal’ section)

Only for Signing_Method = 0, 1

If Signing_Method = 0

signature of a hash of concatenated array of transaction
hashes:

SHA256(tx_hash_1 | … | tx_hash_n)

If Signing_Method = 1

signature of a hash of raw transaction: SHA256(tx_raw)

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Signature 0x40 byte[n*64] Array of resulting signatures that App should embed
into a raw transaction according to a transaction
format of an appropriate blockchain.

Wallet_Remaining
_Signatures

0x62 uint32 Remaining number of SIGN operations before the
wallet will stop signing transactions.

Wallet_Signed_Ha
shes

0x63 uint32 VERSION 1.16 AND LATER

Total number of signed single hashes returned by the
card in SIGN command responses since card
personalization. Sums up array elements within all
SIGN commands.

8.6.2 POS mode
VERSION 2.30 AND LATER

(Signing_Method = 6)

Command INS code: 0xFB

Parameters:

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 48

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32]
Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

Payment_Flow_Ve
rsion

0x54 byte[2]
Version of POS payment scheme the same, as
supported by COS ([0x02,0x01] for version 2.30)

Transaction_Hash
_Size

0x51 byte[1]
Length of a single hash to be signed (0x20 for
SHA256)

Terminal_Certifica
te

0x55 byte[...]

Terminal certificate – nested TLV data contained
fields:

Terminal_Id 0x5A byte[0..32] terminal ID string

Terminal_Param 0x5B uint32 mask of terminal
params (RFU)

Terminal_PublicKey 0x5C byte[65] public key of
terminal

Terminal_Signature 0x5D byte[64] acquirer
signature of terminal certificate. ECDSA-signature of
SHA-256(Terminal_Certificate) with
Terminal_PrivateKey

Transaction_Amo
unt

0x53 BigInteger
Amount of transaction in the same units as
PIN3_Floor_Limit specified during personalization,
big-endian format

Transaction_Extra
_Hash

0x56 byte[..] Additional hash of extra data to be signed

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 49

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Terminal_Transact
ion_Signature

0x57 byte[64]

Optional transaction signature by terminal

signature of a hash of concatenated array of
transaction hashes:

SHA256(Transaction_Hash | Transaction_Amount |
Transaction_Extra_Hash)

PIN3 0x1D byte[32]
Optional PIN3 (mandatory if Check_PIN3_on_Card
flag set in Settings_Mask)

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

CrEx_Salt 0x65 byte[32] Random salt (see “One-touch” POS payments)

CrEx_CryptedMessage 0x67 uint32 Crypted message (see “One-touch” POS
payments)

CrEx_HMAC 0x68 byte[32] Message verification code (see “One-touch”
POS payments)

CrEx_RequirePIN3 0x69

Optional flag signalize that terminal need
request user enter PIN3 to confirm transaction

8.7 READ_ISSUER_DATA
This command returns 512-byte Issuer_Data field and its issuer’s signature. See details in Issuers
section.

Issuer_Data is never changed or parsed by the executable code the Tangem COS. The issuer defines
purpose of use, format and payload of Issuer_Data. For example, this field may contain information
about wallet balance signed by the issuer or additional issuer’s attestation data.

Command INS code: 0xF7

Parameters:

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 50

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value: ‘000000’

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Issuer_Data 0x32 byte[1..512] Data defined by issuer

Issuer_Data_Signature 0x33 byte[64] Issuer’s signature of Issuer_Data with
Issuer_Data_PrivateKey

Version 1.19 and earlier

Issuer’s signature of SHA256-hashed CID concatenated
with Issuer_Data:

SHA256(CID | Issuer_Data)

Version 1.21 and later

When flag Protect_Issuer_Data_Against_Replay set in
Settings_Mask then signature of SHA256-hashed CID
Issuer_Data concatenated with and
Issuer_Data_Counter :

SHA256(CID | Issuer_Data | Issuer_Data_Counter)

Issuer_Data_Counter 0x35 int[4] VERSION 1.21 AND LATER

An optional counter that protect issuer data against
replay attack. When flag
Protect_Issuer_Data_Against_Replay set in
Settings_Mask then this value is mandatory and must
increase on each execution of WRITE_ISSUER_DATA
command.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 51

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

8.7.1 Read issuer extra data
VERSION 2.30 AND LATER

This command retrieves Issuer_Extra_Data field and its issuer’s signature. See details in ‘Issuers’
section.

Issuer_Extra_Data is never changed or parsed by the executable code the Tangem COS. The issuer
defines purpose of use, format and payload of Issuer_Extra_Data. For example, this field may contain
photo or biometric information for ID card product. Because of the large size of Issuer_Extra_Data, a
series of these commands have to be executed to read the entire Issuer_Extra_Data.

Command INS code: 0xF7

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value:
‘000000’

Mode 0x23 byte 0 or omitted – return Issuer_Data

1 – return Issuer_Extra_Data

Offset 0x24 uint16 Offset in Issuer_Extra_Data to requested data part.

Only for reading Issuer_Extra_Data (Mode=1)

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Size 0x25 uint16 Size of all Issuer_Extra_Data field

Returns only for reading Issuer_Extra_Data
(Mode=1) and Offset=0

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 52

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Issuer_Data or

Issuer_Extra_Data

0x32 byte[1..] Data defined by issuer (all Issuer_Data field for
Mode=0 or part of Issuer_Extra_Data for Mode=1)

Issuer_Data_Signature or

Issuer_Extra_Data_Signature

0x33 byte[64] Issuer’s signature of Issuer_Data (Mode=0) or
Issuer_Extra_Data (Mode=1) with
Issuer_Data_PrivateKey

If flags Protect_Issuer_Data_Against_Replay and
Restrict_Overwrite_Issuer_Extra_Data aren’t set in
Settings_Mask then signature of SHA256-hashed CID
concatenated with Issuer_Data or
Issuer_Extra_Data:

SHA256(CID | Issuer_Data) or SHA256(CID |
Issuer_Extra_Data).

Otherwise the signature of SHA256-hashed CID
concatenated with Issuer_Data or Issuer_Extra_Data
and Issuer_Data_Counter or
Issuer_Extra_Data_Counter:

SHA256(CID | Issuer_Data | Issuer_Data_Counter) or

SHA256(CID | Issuer_Extra_Data |
Issuer_Data_Counter)

For Mode=1 this value return only with last part of
Issuer_Extra_Data and size of data part is
determined by free space in communication buffer.

Issuer_Data_Counter or

Issuer_Extra_Data_Counter

0x35 int[4] An optional counter that protect issuer data against
replay attack. When flags
Protect_Issuer_Data_Against_Replay or
Restrict_Overwrite_Issuer_Extra_Data set in
Settings_Mask then this value is mandatory and
must increase on each execution of
WRITE_ISSUER_DATA command.

There are two independent counters in COS to
protect both Issuer_Data and Issuer_Extra_Data.

For Mode=1 this value return only with last part of
Issuer_Extra_Data.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 53

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

8.8 WRITE_ISSUER_DATA
This command write 512-byte Issuer_Data field and its issuer’s signature. See details in Issuers section.

Issuer_Data is never changed or parsed by the executable code the Tangem COS. The issuer defines
purpose of use, format and payload of Issuer_Data. For example, this field may contain information
about wallet balance signed by the issuer or additional issuer’s attestation data.

Command INS code: 0xF6

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

Issuer_Data 0x32 byte[1..512] Data defined by issuer

Issuer_Data_Signature 0x33 byte[64] Issuer’s signature of Issuer_Data with
Issuer_Data_PrivateKey

Version 1.19 and earlier

Issuer’s signature of SHA256-hashed Issuer_Data
concatenated with CID:

SHA256(CID | Issuer_Data)

Version 1.21 and later

When flag Protect_Issuer_Data_Against_Replay set in
Settings_Mask then issuer’s signature of SHA256-
hashed Issuer_Data concatenated with CID and
Issuer_Data_Counter :

SHA256(CID | Issuer_Data | Issuer_Data_Counter)

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 54

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Issuer_Data_Counter

VERSION 1.21 AND
LATER

0x35 int[4] An optional counter that protect issuer data against
replay attack. When flag
Protect_Issuer_Data_Against_Replay set in
Settings_Mask then this value is mandatory and must
increase on each execution of WRITE_ISSUER_DATA
command.

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

8.8.1 Write issuer extra data
VERSION 2.30 AND LATER

This command writes Issuer_Extra_Data field and its issuer’s signature. See details in Issuers section.

Issuer_Extra_Data is never changed or parsed by the executable code the Tangem COS. The issuer
defines purpose of use, format and payload of Issuer_Extra_Data. For example, this field may contain
a photo or biometric information for ID card products. Because of the large size of Issuer_Extra_Data,
a series of these commands have to be executed to write entire Issuer_Extra_Data.

Command INS code: 0xF6

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

Mode 0x23 byte 0 or omitted – write Issuer_Data

1 – start write Issuer_Extra_Data

2 – write part of Issuer_Extra_Data

3 – finalize write Issuer_Extra_Data

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 55

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Size 0x25 uint16 Size of all Issuer_Extra_Data field

Only for start writing Issuer_Extra_Data (Mode=1)

Issuer_Data 0x32 byte[1..] Data defined by issuer (all Issuer_Data field for Mode=0 or
part of Issuer_Extra_Data for Mode=2)

Issuer_Data_Signature 0x33 byte[64] Issuer’s signature with Issuer_Data_PrivateKey of:

for Mode=0:

When flag Protect_Issuer_Data_Against_Replay set in
Settings_Mask then issuer’s signature of SHA256-hashed
Issuer_Data concatenated with CID and
Issuer_Data_Counter :

SHA256(CID | Issuer_Data | Issuer_Data_Counter)

for Mode=1:

If flags Protect_Issuer_Data_Against_Replay and
Restrict_Overwrite_Issuer_Extra_Data are not set in
Settings_Mask then signature of SHA256-hashed CID
concatenated with Size:

SHA256(CID | Size).

Otherwise signature of SHA256-hashed CID concatenated
with Issuer_Extra_Data_Counter and Size:

SHA256(CID | Issuer_Data_Counter | Size)

for Mode=3:

If flags Protect_Issuer_Data_Against_Replay and
Restrict_Overwrite_Issuer_Extra_Data aren’t set in
Settings_Mask then signature of SHA256-hashed CID
concatenated with Issuer_Extra_Data:

SHA256(CID | Issuer_Extra_Data).

Otherwise the signature of SHA256-hashed CID
concatenated with Issuer_Extra_Data and
Issuer_Extra_Data_Counter:

SHA256(CID | Issuer_Extra_Data | Issuer_Data_Counter)

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 56

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Issuer_Data_Counter 0x35 int[4] An optional counter that protect issuer data against replay
attack. When flag Protect_Issuer_Data_Against_Replay or
Restrict_Overwrite_Issuer_Extra_Data set in
Settings_Mask then this value is mandatory and must
increase on each execution of WRITE_ISSUER_DATA
command.

Offset 0x24 uint16 Offset in Issuer_Extra_Data to requested data part.

Only for writing part of Issuer_Extra_Data (Mode=2)

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

8.9 VERIFY_CODE
This command challenges the card to prove integrity of COS binary code. For this purpose, App should
have a special ‘hash library’ publicly provided by Tangem. Approx. size of the library is 5Mb. It contains
~150.000 precalculated SHA512 hashes of COS binary code segments.

VERIFY_CODE command internally reads a segment of COS binary code beginning at
Code_Page_Address and having length of [64 x Code_Page_Count] bytes. Then it appends Challenge
to the code segment, calculates resulting hash and returns it in the response. The application needs to
ensure that returned hash coincides with the one stored in the hash library.

Command INS code: 0xF5

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

Hash_Name 0x06 byte[5..9] Text name of hash function, supported value are ‘sha-256’,
‘sha-1’, ‘sha-224’, ‘sha-384’, ‘sha-512’, ‘crc-16’

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 57

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Code_Page_Address 0x40 byte[4] Value from 0 to ~3000.

Code_Page_Count 0x41 byte[2] Number of 32-byte pages to read: from 1 to 5, or 0 (only for
Code_Page_Address=0)

When Code_Page_Address=0 and Code_Page_Count=0
then all Binary Code used to calculate hash

Challenge 0x16 byte[16] Additional challenge value from 1 to 10

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Code_Hash 0x42 byte[32] Resulting hash SHA256(Firmware_Version | Challenge |
Code_Page_Address | Code_Page_Count | Binary Code)

8.10 VERIFY_CARD
This command is used for card attestation. See details in Security section.

The application shall call VERIFY_CARD command to ensure the card has not been counterfeited. By
using standard challenge-response scheme, the card proves possession of Card_PrivateKey that
corresponds to Card_PublicKey returned by READ_CARD command.

Command INS code: 0xF3

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value:
‘000000’

Challenge 0x16 byte[16] Random challenge generated by host application

Response:

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 58

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Salt 0x17 byte[16] Random salt generated by the card

Card_Signature 0x04 byte[64] Hashed concatenated Challenge and Salt: SHA256(Challenge |
Salt) signed with Card_PrivateKey

8.11 VALIDATE_CARD
This is an optional command that the issuer can support if there is a real risk of mass counterfeiting by
making multiple clones of a single card. This can be the case for transferrable Tangem cards that are
almost never redeemed by users.

The issuer has to have a back-end service storing and updating a counter value
(Card_Validation_Counter) for each card (CID). This function should also be supported by the issuer’s
application.

The application may occasionally call VALIDATE_CARD command to ensure that there’s only one card
having this CID is circulating out there. VALIDATE_CARD will increase COS internal
Card_Validation_Counter by 1 and sign the new value with Card_PrivateKey. Then the application
should submit increased Card_Validation_Counter and its signature to issuer’s card validation back-
end (server). The server should verify the signature and update Card_Validation_Counter value if
previous value is less than the new one. If the server reveals that submitted Card_Validation_Counter
value is less than previous value, then the card having this CID is deemed compromised and should not
be accepted by the application.

Command INS code: 0xF4

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value: ‘000000’

PIN2 0x11 byte[32] Hashed user’s PIN2 code for signing and state-changing operations. See
Security section for more details.

Response:

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 59

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Card_Validation_Counter 0x18 byte[2] Internal validation counter

Card_Signature 0x04 byte[64] Hashed Card_Validation_Counter signed with
Card_PrivateKey

8.12 PURGE_WALLET
This command deletes all wallet data. If Is_Reusable flag is enabled during personalization, the card
changes state to ‘Empty’ and a new wallet can be created by CREATE_WALLET command. If Is_Reusable
flag is disabled, the card switches to ‘Purged’ state. ‘Purged’ state is final, it makes the card useless.

Version 2.01 and later.

This command can be prohibited during the personalization stage by set flag Prohibit_Purge_Wallet in
Settings_Mask.

Command INS code: 0xFC

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value: ‘000000’

PIN2 0x11 byte[32] Hashed user’s PIN2 code for signing and state-changing operations. See
Security section for more details.

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 60

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Status 0x02 byte Current status of the card

[1 - Empty, 2 - Loaded, 3- Purged]

8.13 READ_USER_DATA
VERSION 2.30 AND LATER

This command returns two up to 512-byte User_Data, User_Protected_Data and two counters
User_Counter and User_Protected_Counter fields.

User_Data and User_ProtectedData are never changed or parsed by the executable code the Tangem
COS. The App defines purpose of use, format and it's payload. For example, this field may contain
cashed information from blockchain to accelerate preparing new transaction.

User_Counter and User_ProtectedCounter are counters, that initial values can be set by App and
increased on every signing of new transaction (on SIGN command that calculate new signatures). The
App defines purpose of use. For example, this fields may contain blockchain nonce value.

Command INS code: 0xE1

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32] Hashed user’s PIN1 code to access the card. Default unhashed value:
‘000000’

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

User_Data 0x2A byte[1..512] Data defined by user’s App

User_ProtectedData 0x2B byte[1..512] Data defined by user’s App (confirmed by PIN2)

User_Counter 0x2C int[4]
Counter initialized by user’s App and increased on every
signing of new transaction

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 61

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

User_ProtectedCou
nter

0x2D int[4]
Counter initialized by user’s App (confirmed by PIN2)
and increased on every signing of new transaction

8.14 WRITE_USER_DATA
VERSION 2.30 AND LATER

This command write some of User_Data, User_ProtectedData, User_Counter and
User_ProtectedCounter fields.

User_Data and User_ProtectedData are never changed or parsed by the executable code the Tangem
COS. The App defines purpose of use, format and it's payload. For example, this field may contain
cashed information from blockchain to accelerate preparing new transaction.

User_Counter and User_ProtectedCounter are counters, that initial values can be set by App and
increased on every signing of new transaction (on SIGN command that calculate new signatures). The
App defines purpose of use. For example, this fields may contain blockchain nonce value.

Writing of User_Counter and User_Data protected only by PIN1. User_ProtectedCounter and
User_ProtectedData additionaly need PIN2 to confirmation.

Command INS code: 0xE0

Parameters:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

PIN1 0x10 byte[32]
Hashed user’s PIN1 code to access the card. Default
unhashed value: ‘000000’

PIN2 0x11 byte[32]
Optional hashed user’s PIN2 code to confirm write
User_ProtectedData and User_ProtectedCounter

User_Data 0x2A byte[1..512] Optional data defined by user’s App

User_ProtectedData 0x2B byte[1..512] Optional data defined by user’s App (PIN2 is mandatory)

User_Counter 0x2C int[4] Optional new user counter value

User_Counter 0x2D int[4] Optional new protected user counter value

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 62

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

Response:

Field Tag Type Description

CID 0x01 byte[8] Unique Tangem card ID number

9 Appendix A – Dynamic NDEF

9.1 General description
Card supports reading data in NDEF format in accordance with the standards of the NFC Forum:

• NFC Forum Type 4 Tag Operation Specification [NFCForum-TS-Type-4-Tag_2.0]
• NFC Data Exchange Format (NDEF) Technical Specification [NFCForum-TS-NDEF_1.0]

NDEF contains three records:

1. URI (value ‘tangem.com’)
2. AAR (android application record, value ‘com.tangem.wallet’) – not used in iOS
3. Dynamically generated record:

• Type – NFC Forum External type (value ‘tangem.com:wallet’)
• Content:
• Status – two bytes (0x9000 – OK, 0x6A86 – card has PIN code set up, so TLV structure will not be

given)
• TLV data structure:

o CardID – unique car number
 Tag: 0x01
 Length: 8

o Firmware - card firmware version
 Tag: 0x80
 Length: 4 – 10
 UTF-8 string

o SettingsMask – card settings (see full manual)
 Tag: 0x0A
 Length: 2

o Card_Data – nested TLV structure with card properties
 Tag: 0x0C
 Length: 0 – 512
 Format:

• Batch_ID – batch number
o Tag: 0x81
o Length: 2

• Manufacture_Date_Time - manufacture date and time

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 63

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

o Tag: 0x82
o Length: 4

• Issuer_Name - card issuer name
o Tag: 0x83
o UTF-8 string

• Blockchain_Name – the name of blockchain, which key card holds
o Tag: 0x84
o UTF-8 string

• Token_Symbol – (optional) ERC20 token sybol (e.g., ‘SEED’)
o Tag: 0xA0
o UTF-8 string

• Token_Contract_Address – (optional) smart contract adress for ERC20
token

o Tag: 0xA1
o UTF-8 string

• Token_Decimal – (optional) number of decimal places for ERC20 token
(usually 18)

o Tag: 0xA2
o 1 Byte

• Manufacturer_Signature – CID or (CID || Card_PublicKey) signed with
manufacturer’s secret key

o Tag: 0x86
o Length: 64
o Format [R[32], S[32]] for elliptical curve signature

o Card_PublicKey – card public key
 Tag: 0x03
 Length: 65

o Wallet_PublicKey - public key of the blockchain wallet
 Tag: 0x60
 Length: 65
 Format [0x04, X[32], Y[32]], elliptical curve secp256k1

o MaxSignatures – initial number of allowed transaction signatures (set on
personalization)
 Tag: 0x08
 Length: 4

o RemainingSignatures – remaining number of allowed transaction signatures
 Tag: 0x62
 Length: 4

o SignedHashes – number of hashes signed after personalization (there can be severeal
hases in one transaction)
 Tag: 0x63
 Length: 4

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 64

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

o Challenge – first part of a message signed by card
 Tag: 0x16
 Length: 16

o Salt – second part of a message signed by card
 Tag: 0x17
 Length: 16

o Wallet_Signature – [Challenge, Salt] SHA256 signature signed with Wallet_PrivateKey
 Tag: 0x61
 Length: 64

o Format [R[32],S[32]] for elliptical curve signature
o Health – card state (0 – ОК, other value – card is damaged)

 Tag: 0x0F
 Length: 1

Note: If the card has no wallet (Status is set to ‘Empty’), then the record will contain only the following
values: CardID, Firmware, Card_Data, Card_PublicKey, Health.

9.2 Example (card with PIN set):

• Record #1: URI record
o Type Name Format: NFC Forum well-known type(1),
o Short Record,
o Type: "U"
o Payload length: 11 bytes
o Payload data: 01 74 61 6E 67 65 6D 2E 63 6F 6D (‘tangem.com’)

• Record #2: Android Application record
o Type Name Format: NFC Forum external type (4),
o Short Record,
o Type: "android.com:pkg"
o Payload length: 17 bytes
o Payload data: 63 6F 6D 2E 74 61 6E 67 65 6D 2E 77 61 6C 6C 65 74

(‘com.tangem.wallet’)
• Record #3: NFC Forum external type record

o Type Name Format: NFC Forum external type (4)
o Short Record
o Type: "tangem.com:wallet"
o Payload length: 2 bytes
o Payload data: 6A 86

9.3 Example (before wallet creation):

• Record #1: URI record
o Type Name Format: NFC Forum well-known type(1),
o Short Record,

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 65

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

o type: "U"
o Payload length: 11 bytes
o Payload data: 01 74 61 6E 67 65 6D 2E 63 6F 6D (‘tangem.com’)

• Record #2: Android Application record
o Type Name Format: NFC Forum external type (4),
o Short Record,
o type: "android.com:pkg"
o Payload length: 17 bytes
o Payload data: 63 6F 6D 2E 74 61 6E 67 65 6D 2E 77 61 6C 6C 65 74

(‘com.tangem.wallet’)
• Record #3: NFC Forum external type record

o Type Name Format: NFC Forum external type (4)
o Short Record
o type: "tangem.com:wallet"
o Payload length: 120 bytes
o Payload data:

90 00 01 08 CB 01 00 00 00 00 00 04 80 06 31 2E
32 38 72 00 0C 93 81 02 00 15 82 04 07 E2 07 1B
83 0B 53 55 50 45 52 42 4C 4F 4F 4D 00 84 03 45
54 48 A0 04 53 45 45 44 A1 2A 30 78 34 45 37 42
64 38 38 45 33 39 39 36 66 34 38 45 32 61 32 34
44 31 35 45 33 37 63 41 34 43 30 32 42 34 44 31
33 34 64 32 A2 01 12 86 40 31 AE DE CF 5E AE 50
1D 2E EB 07 E5 5C 6F 1B DE FC D3 DC BE EA 9A EA
C7 95 96 4B 60 EA DA BB 11 AB 92 62 F2 D0 14 E8
29 E5 DD 3C 32 20 45 3C 1C 68 D0 D1 19 27 77 1B
1F 72 7C 21 52 86 C8 50 31 03 41 04 1E 2C 7E 19
3A C0 D9 25 ED AC 5E 7B 97 6E 82 0E ED D7 23 E4
02 C4 14 43 19 17 16 2D 44 25 FF F5 93 07 14 12
3F AB D5 83 D5 C0 9E 5A C0 40 5F 16 17 9F 47 4D
41 8C B2 32 F6 1C 9E 6B 57 3B 32 E4 0F 01 00

9.4 Example (after wallet creation):

• Record #1: URI record
o Type Name Format: NFC Forum well-known type(1),
o Short Record,
o type: "U"
o Payload length: 11 bytes
o Payload data: 01 74 61 6E 67 65 6D 2E 63 6F 6D (‘tangem.com’)

• Record #2: Android Application record
o Type Name Format: NFC Forum external type (4),
o Short Record,
o type: "android.com:pkg"
o Payload length: 17 bytes

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 66

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

o Payload data: 63 6F 6D 2E 74 61 6E 67 65 6D 2E 77 61 6C 6C 65 74
(‘com.tangem.wallet’)

• Record #3: NFC Forum external type record
o Type Name Format: NFC Forum external type (4)
o Type: "tangem.com:wallet"
o Payload length: 295 bytes
o Payload data:

90 00 01 08 CB 01 00 00 00 00 00 04 80 06 31 2E
32 38 72 00 0A 02 7E 31 0C 93 81 02 00 15 82 04
07 E2 07 1B 83 0B 53 55 50 45 52 42 4C 4F 4F 4D
00 84 03 45 54 48 A0 04 53 45 45 44 A1 2A 30 78
34 45 37 42 64 38 38 45 33 39 39 36 66 34 38 45
32 61 32 34 44 31 35 45 33 37 63 41 34 43 30 32
42 34 44 31 33 34 64 32 A2 01 12 86 40 31 AE DE
CF 5E AE 50 1D 2E EB 07 E5 5C 6F 1B DE FC D3 DC
BE EA 9A EA C7 95 96 4B 60 EA DA BB 11 AB 92 62
F2 D0 14 E8 29 E5 DD 3C 32 20 45 3C 1C 68 D0 D1
19 27 77 1B 1F 72 7C 21 52 86 C8 50 31 03 41 04
1E 2C 7E 19 3A C0 D9 25 ED AC 5E 7B 97 6E 82 0E
ED D7 23 E4 02 C4 14 43 19 17 16 2D 44 25 FF F5
93 07 14 12 3F AB D5 83 D5 C0 9E 5A C0 40 5F 16
17 9F 47 4D 41 8C B2 32 F6 1C 9E 6B 57 3B 32 E4
60 41 04 ED CE A7 82 A6 4E 2A F1 47 64 E6 EC C8
D1 37 2B 3E 65 59 5D 6F 8F BD 8B 08 08 4E 7E A3
7A C4 D3 F3 11 A6 D7 CB 9E 4F 61 BC 88 F4 C1 1C
02 3A A7 46 7D C8 00 46 03 3F 9D C5 A2 D0 34 BC
9A B2 35 08 04 00 0F 42 40 62 04 00 0F 42 40 63
04 00 00 00 00 16 10 0D 03 78 C4 3C 19 48 33 84
53 93 E8 CD 5D D1 B4 17 10 AC 9C 63 93 18 F2 EB
A8 F9 F7 B7 91 0B DE DD F7 61 40 F8 F9 EE 41 43
ED 74 C7 EB 8E A4 E7 F9 21 D1 D6 B8 D3 3E C0 BD
56 C3 5C 02 8F C0 21 C5 D5 B5 7D 3A EE 57 CC 93
74 CB F6 6E B3 B4 AD 54 0E ED 89 C1 86 5A 61 5D
99 60 24 1A CB 07 75 6A D4 18 9A 0F 01 00

10. Appendix B – CRC-A

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 67

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

11. Appendix C – Verification of Luhn code

12. Appendix D - Examples

12.1 Read command
Request

>> 00F2000022102091B4D142823F7D20C5F08DF69122DE43F35F057A988D9619F6D3138485C9A20
3

CLA INS P1 P2 Lc Payload

 Tag Length Value

00 F2 00 00 22 10 (PIN1) 20
91 B4 D1 42 82 3F 7D 20 C5 F0 8D F6 91 22 DE 43 F3 5F
05 7A 98 8D 96 19 F6 D3 13 84 85 C9 A2 03

Response

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 68

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

>> 0108FF00000000000111200B534D415254204341534800020102800A312E3238642053444B000
341044CB1004B43B407419E29A8FFDB64D4E54B623CEB37F3C2037B3ED6F38EEE0C1F2E5AB5D015
DF78FE15EFA5327F59A24C059C999AFC1D3F2A8DDEEE16467CA75F0A027E310C5E8102FFFF820407
E2071B830B54414E47454D2053444B00840342544386405D7FFCE7446DAA9084595F383E712A63B2
AC4CF7BDE7673F05D6FC629F0D3E0F637910B5A675F66B633331630AEFB614345AF05208DEECF227
4FF3B44642AC883041045F16BD1D2EAFE463E62A335A09E6B2BBCBD04452526885CB679FC4D27AF
1BD22F553C7DEEFB54FD3D4F361D14E6DC3F11B7D4EA183250A60720EBDF9E110CD26050A736563
703235366B3100080400000064070100090205DC604104B45FF0D628E1B59F7AEFA1D5B45AB9D7C4
7FC090D8B29ACCB515431BDBAD2802DDB3AC5E83A06BD8F13ABB84A465CA3C0FA0B44301F80295
A9B4C5E35D5FDFE56204000000646304000000000F01009000

Tag Length Value

01 (CID) 08 FF 00 00 00 00 00 01 11

20 (Manufacturer_ID) 0B
53 4D 41 52 54 20 43 41 53 48
00 (SMART CASH)

02 (Status) 01 02

80 (Firmware) 0A
31 2E 32 38 64 20 53 44 4B 00 (1.28d
SDK)

03 (CARD_PUBLIC_KEY) 41

04 4C B1 00 4B 43 B4 07 41 9E 29 A8 FF
DB 64 D4 E5 4B 62 3C EB 37 F3 C2 03 7B
3E D6 F3 8E EE 0C 1F 2E 5A B5 D0 15 DF
78 FE 15 EF A5 32 7F 59 A2 4C 05 9C 99
9A FC 1D 3F 2A 8D DE EE 16 46 7C A7 5F

0A (Settings_Mask) 02 7E 31

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 69

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

0C (Card_Data) 5E

81 02 FF FF 82 04 07 E2 07 1B 83 0B 54
41 4E 47 45 4D 20 53 44 4B 00 84 03 42
54 43 8640 5D 7F FC E7 44 6D AA 90 84
59 5F 38 3E 71 2A 63 B2 AC 4C F7 BD E7
67 3F 05 D6 FC 62 9F 0D 3E 0F 63 79 10
B5 A6 75 F6 6B 63 33 31 63 0A EF B6 14
34 5A F0 52 08 DE EC F2 27 4F F3 B4 46
42 AC 88

Card_Data
(Detailed)

81 (Batch) 02 FF FF

82 (Manufacture_Date_Time) 04 07 E2 07 1B

83 (Issuer_ID) 0B
54 41 4E 47 45 4D 20 53 44 4B
00 (TANGEM SDK)

84 (Blockchain_ID) 03 42 54 43 (BTC)

86
(CID_MANUFACTURER_SIGNATURE)

40

5D 7F FC E7 44 6D AA 90 84 59 5F 38 3E
71 2A 63 B2 AC 4C F7 BD E7 67 3F 05 D6
FC 62 9F 0D 3E 0F 63 79 10 B5 A6 75 F6
6B 63 33 31 63 0A EF B6 14 34 5A F0 52
08 DE EC F2 27 4F F3 B4 46 42 AC 88

30 (ISSUER_PUBLIC_KEY) 41

04 5F 16 BD 1D 2E AF E4 63 E6 2A 33 5A
09 E6 B2 BB CB D0 44 52 52 68 85 CB 67
9F C4 D2 7A F1 BD 22 F5 53 C7 DE EF B5
4F D3 D4 F3 61 D1 4E 6D C3 F1 1B 7D 4E
A1 83 25 0A 60 72 0E BD F9 E1 10 CD 26

05 (Curve_ID) 0A
73 65 63 70 32 35 36 6B 31
00 (secp256k1)

08 (Max_Signatures) 04 00 00 00 64

07 (Signing_Method) 01 00

09 (Pause_Before_PIN2) 02 05 DC

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 70

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

60 (WALLET_PUBLIC_KEY) 41

04 B4 5F F0 D6 28 E1 B5 9F 7A EF A1 D5
B4 5A B9 D7 C4 7F C0 90 D8 B2 9A CC B5
15 43 1B DB AD 28 02 DD B3 AC 5E 83
A0 6B D8 F1 3A BB 84 A4 65 CA 3C 0F A0
B4 43 01 F8 02 95 A9 B4 C5 E3 5D 5F DF
E5

62 (Wallet_Remaining_Signatures) 04 00 00 00 64

63 (Wallet_Signed_Hashes) 04 00 00 00 00

0F (Health) 01 00

13. Appendix E – Private files for SSI and other
applications

In firmware version 3.29, instead of IssuerDataEx, several files can be written to the card (in
3.29 up to 40 files, up to 48 kb in total).

Moreover, each file can be public or private (PIN2 is required to read a private file).

For now, every file must be signed with the IssuerDataKey key and can be protected by the
IssuerDataCounter counter (similar to the IssuerDataEx), but in the future, new modes will
probably appear.

Files index starts from 0, TAG_Index = 0x26 (1 byte), when the file is deleted, the numbers are
shifted.

IssuerDataSignature (TAG_Issuer_Data_Signature = 0x33) is stored only in case a single
file has been written.
File deletion and privacy settings are protected by PIN2.

After one successful PIN2 check, SecurityDelay is not performed during one session.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 71

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

13.1 File writing

Writing is generally similar to IssuerDataEx command, first file recording is initiated (Mode
= 1), then several data with the offset (Mode = 2), then the end of writing (Mode = 3).

The differences are:

• new command INS_WriteFileData = 0xD0
• start recording command (Mode = 1) adds a new file (the index of the file being added

is returned TAG_Index = 0x26)
• when writing a piece of data (Mode = 2) and finishing writing a file (Mode = 3), the

file index (TAG_Index = 0x26, 1 byte) is also transmitted, which must match the one
returned at the beginning of writing.

The procedure for writing a new file should look like this:

1. Start writing the file INS_WriteFileData = 0xD0 (TAG_Mode = 1, TAG_Size =
fileSize)

2. Write the file parts one by one, performing INS_WriteFileData = 0xD0 (TAG_Mode =
2, TAG_Offset = fileOffset).

3. Confirm the file entry INS_WriteFileData = 0xD0 (TAG_Mode = 3)

For now, items 1 and 3 must be confirmed by the IssuerDataSignature signature.

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 72

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

13.2 File reading

Reading is generally similar to the IssuerDataEx command.

The differences are:

• Request:
o The new command, INS_GetFileData = 0xD1
o Mode (TAG_Mode = 0x23) is not used

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 73

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

o Optionally, the index of the file (TAG_Index = 0x26) that should be read is
transmitted (by default, the file with index 0). If the file with the specified
index can’t be read (for example, it’s private, and PIN2 has not been passed),
then a file with the next index is returned.

o PIN2 can be optionally passed for the ability to read private files.

• Response:
o If there is no file with an index equal to or greater than the specified one and

that meets the search criteria, then the error SW_FILE_NOT_FOUND = 0x6A82 is
returned

o The response contains TAG_Index = 0x26 - the index of the returned file
o When reading the first part of the file (with TAG_Offset = 0x0000),

TAG_FileSettings = 0x27 is additionally returned - two bytes, a mask with
file settings. 0x0001 - the file is public, 0x0000 - private

o IssuerDataSignature (TAG_Issuer_Data_Signature = 0x33) is stored only
if there is only one file on the card.

If there are no files, an empty IssuerData will be returned, to be able to read the
IssuerDataCounter.

The procedure for reading all files should look like this:

1. Set fileIndex = 0
2. Execute the command INS_GetFileData (TAG_Index = fileIndex, TAG_Offset =

fileOffset)
3. If the response is SW_FILE_NOT_FOUND - all files have been read, the procedure is over.
4. Take fileIndex = TAG_Index and fileSize = TAG_Size from the reaponse.
5. Repeat INS_GetFileData (TAG_Index = fileIndex, TAG_Offset = fileOffset)

increasing fileOffset until fileSize bytes is read (as an option until the
TAG_IssuerDataCounter tag is gottn in the response).

6. Increase the fileIndex and go to step 2

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 74

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

13.3 File deleting

INS_WriteFileData = 0xD0 command

Parameters:

• TAG_CardID - CID
• TAG_PIN - PIN
• TAG_PIN2 - PIN2
• TAG_Mode = 0x23 - 0x05 - delete file
• TAG_Index = 0x26 - index of the file to be deleted

Gimly Tangem Technical Manual + private files_November 2020_CONFIDENTIAL 75

Gimly
Kraanspoor 7E2
1033 SC, Amsterdam

T: +31 (0)20 786 6452
E: caspar@gimly.io
W: www.gimly.io

KvK: 75570750
BTW: NL002189334B65
IBAN: NL79 KNAB 0259516260

13.4 Changing file privacy

INS_WriteFileData = 0xD0 command

Parameters:

• TAG_CardID - CID
• TAG_PIN - PIN
• TAG_PIN2 - PIN2
• TAG_Mode = 0x23 - 0x06 - change file privacy
• TAG_Index = 0x26 - index of the file
• TAG_FileSettings = 0x27 - settings mask, 0x0001 - public file, 0x0000 - private

	Made for blockchain NFC: manual
	Contents
	1. Gimly: Tangem implementation partner
	2. Made-for-blockchain NFC summary
	2.1 General life cycle
	2.2 NFC communication protocol:
	2.3 Card commands and personalisation options:

	3. Security
	3.1 General
	3.2 Card attestation
	3.3 Issuers
	3.3.1 Issuer transaction key
	3.3.2 Issuer data key

	3.4 Acquirer
	3.4.1 Acquirer key
	3.4.2 Card shared secret key

	3.5 Wallet key
	3.6 User’s codes
	3.6.1 PIN1 code
	3.6.2 PIN2 code
	3.6.3 PIN3 code
	3.6.4 CVC code

	3.7 Linked terminal
	3.8 Security Delay

	4. NFC communication
	4.1 General
	4.2 TLV format (SimpleTLV)
	4.3 Non-encrypted request
	4.4 Fast encrypted request
	4.5 Strong encrypted request
	4.6 OPEN_SESSION command
	4.6.1 Fast Encryption
	4.6.2 Strong Encryption

	4.7 Pending security delay
	5. Personalization
	5.1 UID and CID
	5.2 NDEF records
	5.3 Card_Data
	6. Dynamic NDEF
	7. Activation
	8. Commands
	8.1 ACTIVATE_CARD
	8.2 READ_CARD
	8.3 CREATE_WALLET
	8.4 CHECK_WALLET
	8.5 SET_PIN
	8.6 SIGN
	8.6.1 Wallet Mode
	8.6.2 POS mode

	8.7 READ_ISSUER_DATA
	8.7.1 Read issuer extra data

	8.8 WRITE_ISSUER_DATA
	8.8.1 Write issuer extra data

	8.9 VERIFY_CODE
	8.10 VERIFY_CARD
	8.11 VALIDATE_CARD
	8.12 PURGE_WALLET
	8.13 READ_USER_DATA
	8.14 WRITE_USER_DATA

	9 Appendix A – Dynamic NDEF
	9.1 General description
	9.2 Example (card with PIN set):
	9.3 Example (before wallet creation):
	9.4 Example (after wallet creation):

	10. Appendix B – CRC-A
	11. Appendix C – Verification of Luhn code
	12. Appendix D - Examples
	12.1 Read command

	13. Appendix E – Private files for SSI and other applications
	13.1 File writing
	13.2 File reading
	13.3 File deleting
	13.4 Changing file privacy

